CogCoM: Train Large Vision-Language Models Diving into Details through Chain of Manipulations
- URL: http://arxiv.org/abs/2402.04236v2
- Date: Wed, 22 May 2024 17:10:29 GMT
- Title: CogCoM: Train Large Vision-Language Models Diving into Details through Chain of Manipulations
- Authors: Ji Qi, Ming Ding, Weihan Wang, Yushi Bai, Qingsong Lv, Wenyi Hong, Bin Xu, Lei Hou, Juanzi Li, Yuxiao Dong, Jie Tang,
- Abstract summary: Chain of Manipulations is a mechanism that enables Vision-Language Models to solve problems step-by-step with evidence.
After training, models can solve various visual problems by eliciting intrinsic manipulations (e.g., grounding, zoom in) actively without involving external tools.
Our trained model, textbfCogCoM, achieves state-of-the-art performance across 9 benchmarks from 4 categories.
- Score: 61.21923643289266
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vision-Language Models (VLMs) have demonstrated their broad effectiveness thanks to extensive training in aligning visual instructions to responses. However, such training of conclusive alignment leads models to ignore essential visual reasoning, further resulting in failures in meticulous visual problems and unfaithful responses. Drawing inspiration from human cognition in solving visual problems (e.g., marking, zoom in), this paper introduces Chain of Manipulations, a mechanism that enables VLMs to solve problems step-by-step with evidence. After training, models can solve various visual problems by eliciting intrinsic manipulations (e.g., grounding, zoom in) with results (e.g., boxes, image) actively without involving external tools, while also allowing users to trace error causes. We study the roadmap to implement this mechanism, including (1) a flexible design of manipulations upon extensive analysis, (2) an efficient automated data generation pipeline, (3) a compatible VLM architecture capable of multi-turn multi-image, and (4) a model training process for versatile capabilities. With the design, we also manually annotate 6K high-quality samples for the challenging graphical mathematical problems. Our trained model, \textbf{CogCoM}, equipped with this mechanism with 17B parameters achieves state-of-the-art performance across 9 benchmarks from 4 categories, demonstrating the effectiveness while preserving the interpretability. Our code, model weights, and collected data are publicly available at https://github.com/THUDM/CogCoM.
Related papers
- Enhancing Large Vision Language Models with Self-Training on Image Comprehension [99.9389737339175]
We introduce Self-Training on Image (STIC), which emphasizes a self-training approach specifically for image comprehension.
First, the model self-constructs a preference for image descriptions using unlabeled images.
To further self-improve reasoning on the extracted visual information, we let the model reuse a small portion of existing instruction-tuning data.
arXiv Detail & Related papers (2024-05-30T05:53:49Z) - Multi-modal Auto-regressive Modeling via Visual Words [96.25078866446053]
We propose the concept of visual tokens, which maps the visual features to probability distributions over Large Multi-modal Models' vocabulary.
We further explore the distribution of visual features in the semantic space within LMM and the possibility of using text embeddings to represent visual information.
arXiv Detail & Related papers (2024-03-12T14:58:52Z) - Machine Vision Therapy: Multimodal Large Language Models Can Enhance Visual Robustness via Denoising In-Context Learning [67.0609518552321]
We propose to conduct Machine Vision Therapy which aims to rectify the noisy predictions from vision models.
By fine-tuning with the denoised labels, the learning model performance can be boosted in an unsupervised manner.
arXiv Detail & Related papers (2023-12-05T07:29:14Z) - HAT-GAE: Self-Supervised Graph Auto-encoders with Hierarchical Adaptive
Masking and Trainable Corruption [0.76146285961466]
We propose a novel auto-encoder model for graph representation learning.
Our model incorporates a hierarchical adaptive masking mechanism to incrementally increase the difficulty of training.
We demonstrate the superiority of our proposed method over state-of-the-art graph representation learning models.
arXiv Detail & Related papers (2023-01-28T02:43:54Z) - mPLUG: Effective and Efficient Vision-Language Learning by Cross-modal
Skip-connections [104.14624185375897]
mPLUG is a new vision-language foundation model for both cross-modal understanding and generation.
It achieves state-of-the-art results on a wide range of vision-language downstream tasks, such as image captioning, image-text retrieval, visual grounding and visual question answering.
arXiv Detail & Related papers (2022-05-24T11:52:06Z) - Scanflow: A multi-graph framework for Machine Learning workflow
management, supervision, and debugging [0.0]
We propose a novel containerized directed graph framework to support end-to-end Machine Learning workflow management.
The framework allows defining and deploying ML in containers, tracking their metadata, checking their behavior in production, and improving the models by using both learned and human-provided knowledge.
arXiv Detail & Related papers (2021-11-04T17:01:12Z) - Visual Adversarial Imitation Learning using Variational Models [60.69745540036375]
Reward function specification remains a major impediment for learning behaviors through deep reinforcement learning.
Visual demonstrations of desired behaviors often presents an easier and more natural way to teach agents.
We develop a variational model-based adversarial imitation learning algorithm.
arXiv Detail & Related papers (2021-07-16T00:15:18Z) - Decoupling the Role of Data, Attention, and Losses in Multimodal
Transformers [20.343814813409537]
We study three important factors which can impact the quality of learned representations: pretraining data, the attention mechanism, and loss functions.
By pretraining models on six datasets, we observe that dataset noise and language similarity to our downstream task are important indicators of model performance.
We show that successful contrastive losses used in the self-supervised learning literature do not yield similar performance gains when used in multimodal transformers.
arXiv Detail & Related papers (2021-01-31T20:36:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.