Densely Connected Recurrent Residual (Dense R2UNet) Convolutional Neural
Network for Segmentation of Lung CT Images
- URL: http://arxiv.org/abs/2102.00663v1
- Date: Mon, 1 Feb 2021 06:34:10 GMT
- Title: Densely Connected Recurrent Residual (Dense R2UNet) Convolutional Neural
Network for Segmentation of Lung CT Images
- Authors: Kaushik Dutta
- Abstract summary: We present a synthesis of Recurrent CNN, Residual Network and Dense Convolutional Network based on the U-Net model architecture.
The proposed model tested on the benchmark Lung Lesion dataset showed better performance on segmentation tasks than its equivalent models.
- Score: 0.342658286826597
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep Learning networks have established themselves as providing state of art
performance for semantic segmentation. These techniques are widely applied
specifically to medical detection, segmentation and classification. The advent
of the U-Net based architecture has become particularly popular for this
application. In this paper we present the Dense Recurrent Residual
Convolutional Neural Network(Dense R2U CNN) which is a synthesis of Recurrent
CNN, Residual Network and Dense Convolutional Network based on the U-Net model
architecture. The residual unit helps training deeper network, while the dense
recurrent layers enhances feature propagation needed for segmentation. The
proposed model tested on the benchmark Lung Lesion dataset showed better
performance on segmentation tasks than its equivalent models.
Related papers
- MDFI-Net: Multiscale Differential Feature Interaction Network for Accurate Retinal Vessel Segmentation [3.152646316470194]
This paper proposes a feature-enhanced interaction network based on DPCN, named MDFI-Net.
The proposed MDFI-Net achieves segmentation performance superior to state-of-the-art methods on public datasets.
arXiv Detail & Related papers (2024-10-20T16:42:22Z) - TCCT-Net: Two-Stream Network Architecture for Fast and Efficient Engagement Estimation via Behavioral Feature Signals [58.865901821451295]
We present a novel two-stream feature fusion "Tensor-Convolution and Convolution-Transformer Network" (TCCT-Net) architecture.
To better learn the meaningful patterns in the temporal-spatial domain, we design a "CT" stream that integrates a hybrid convolutional-transformer.
In parallel, to efficiently extract rich patterns from the temporal-frequency domain, we introduce a "TC" stream that uses Continuous Wavelet Transform (CWT) to represent information in a 2D tensor form.
arXiv Detail & Related papers (2024-04-15T06:01:48Z) - RFC-Net: Learning High Resolution Global Features for Medical Image
Segmentation on a Computational Budget [4.712700480142554]
We propose Receptive Field Chain Network (RFC-Net) that learns high resolution global features on a compressed computational space.
Our experiments demonstrate that RFC-Net achieves state-of-the-art performance on Kvasir and CVC-ClinicDB benchmarks for Polyp segmentation.
arXiv Detail & Related papers (2023-02-13T06:52:47Z) - SAR Despeckling Using Overcomplete Convolutional Networks [53.99620005035804]
despeckling is an important problem in remote sensing as speckle degrades SAR images.
Recent studies show that convolutional neural networks(CNNs) outperform classical despeckling methods.
This study employs an overcomplete CNN architecture to focus on learning low-level features by restricting the receptive field.
We show that the proposed network improves despeckling performance compared to recent despeckling methods on synthetic and real SAR images.
arXiv Detail & Related papers (2022-05-31T15:55:37Z) - Local Critic Training for Model-Parallel Learning of Deep Neural
Networks [94.69202357137452]
We propose a novel model-parallel learning method, called local critic training.
We show that the proposed approach successfully decouples the update process of the layer groups for both convolutional neural networks (CNNs) and recurrent neural networks (RNNs)
We also show that trained networks by the proposed method can be used for structural optimization.
arXiv Detail & Related papers (2021-02-03T09:30:45Z) - Spatio-Temporal Inception Graph Convolutional Networks for
Skeleton-Based Action Recognition [126.51241919472356]
We design a simple and highly modularized graph convolutional network architecture for skeleton-based action recognition.
Our network is constructed by repeating a building block that aggregates multi-granularity information from both the spatial and temporal paths.
arXiv Detail & Related papers (2020-11-26T14:43:04Z) - Genetic U-Net: Automatically Designed Deep Networks for Retinal Vessel
Segmentation Using a Genetic Algorithm [2.6629444004809826]
Genetic U-Net is proposed to generate a U-shaped convolutional neural network (CNN) that can achieve better retinal vessel segmentation but with fewer architecture-based parameters.
The experimental results show that the architecture obtained using the proposed method offered a superior performance with less than 1% of the number of the original U-Net parameters in particular.
arXiv Detail & Related papers (2020-10-29T13:31:36Z) - Semantic Segmentation With Multi Scale Spatial Attention For Self
Driving Cars [2.7317088388886384]
We present a novel neural network using multi scale feature fusion at various scales for accurate and efficient semantic image segmentation.
We used ResNet based feature extractor, dilated convolutional layers in downsampling part, atrous convolutional layers in the upsampling part and used concat operation to merge them.
A new attention module is proposed to encode more contextual information and enhance the receptive field of the network.
arXiv Detail & Related papers (2020-06-30T20:19:09Z) - The Heterogeneity Hypothesis: Finding Layer-Wise Differentiated Network
Architectures [179.66117325866585]
We investigate a design space that is usually overlooked, i.e. adjusting the channel configurations of predefined networks.
We find that this adjustment can be achieved by shrinking widened baseline networks and leads to superior performance.
Experiments are conducted on various networks and datasets for image classification, visual tracking and image restoration.
arXiv Detail & Related papers (2020-06-29T17:59:26Z) - DRU-net: An Efficient Deep Convolutional Neural Network for Medical
Image Segmentation [2.3574651879602215]
Residual network (ResNet) and densely connected network (DenseNet) have significantly improved the training efficiency and performance of deep convolutional neural networks (DCNNs)
We propose an efficient network architecture by considering advantages of both networks.
arXiv Detail & Related papers (2020-04-28T12:16:24Z) - CRNet: Cross-Reference Networks for Few-Shot Segmentation [59.85183776573642]
Few-shot segmentation aims to learn a segmentation model that can be generalized to novel classes with only a few training images.
With a cross-reference mechanism, our network can better find the co-occurrent objects in the two images.
Experiments on the PASCAL VOC 2012 dataset show that our network achieves state-of-the-art performance.
arXiv Detail & Related papers (2020-03-24T04:55:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.