The Heterogeneity Hypothesis: Finding Layer-Wise Differentiated Network
Architectures
- URL: http://arxiv.org/abs/2006.16242v2
- Date: Sun, 23 May 2021 21:23:58 GMT
- Title: The Heterogeneity Hypothesis: Finding Layer-Wise Differentiated Network
Architectures
- Authors: Yawei Li, Wen Li, Martin Danelljan, Kai Zhang, Shuhang Gu, Luc Van
Gool, Radu Timofte
- Abstract summary: We investigate a design space that is usually overlooked, i.e. adjusting the channel configurations of predefined networks.
We find that this adjustment can be achieved by shrinking widened baseline networks and leads to superior performance.
Experiments are conducted on various networks and datasets for image classification, visual tracking and image restoration.
- Score: 179.66117325866585
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we tackle the problem of convolutional neural network design.
Instead of focusing on the design of the overall architecture, we investigate a
design space that is usually overlooked, i.e. adjusting the channel
configurations of predefined networks. We find that this adjustment can be
achieved by shrinking widened baseline networks and leads to superior
performance. Based on that, we articulate the heterogeneity hypothesis: with
the same training protocol, there exists a layer-wise differentiated network
architecture (LW-DNA) that can outperform the original network with regular
channel configurations but with a lower level of model complexity.
The LW-DNA models are identified without extra computational cost or training
time compared with the original network. This constraint leads to controlled
experiments which direct the focus to the importance of layer-wise specific
channel configurations. LW-DNA models come with advantages related to
overfitting, i.e. the relative relationship between model complexity and
dataset size. Experiments are conducted on various networks and datasets for
image classification, visual tracking and image restoration. The resultant
LW-DNA models consistently outperform the baseline models. Code is available at
https://github.com/ofsoundof/Heterogeneity_Hypothesis.
Related papers
- On Characterizing the Evolution of Embedding Space of Neural Networks
using Algebraic Topology [9.537910170141467]
We study how the topology of feature embedding space changes as it passes through the layers of a well-trained deep neural network (DNN) through Betti numbers.
We demonstrate that as depth increases, a topologically complicated dataset is transformed into a simple one, resulting in Betti numbers attaining their lowest possible value.
arXiv Detail & Related papers (2023-11-08T10:45:12Z) - Local Kernel Renormalization as a mechanism for feature learning in
overparametrized Convolutional Neural Networks [0.0]
Empirical evidence shows that fully-connected neural networks in the infinite-width limit eventually outperform their finite-width counterparts.
State-of-the-art architectures with convolutional layers achieve optimal performances in the finite-width regime.
We show that the generalization performance of a finite-width FC network can be obtained by an infinite-width network, with a suitable choice of the Gaussian priors.
arXiv Detail & Related papers (2023-07-21T17:22:04Z) - ReLU Neural Networks with Linear Layers are Biased Towards Single- and Multi-Index Models [9.96121040675476]
This manuscript explores how properties of functions learned by neural networks of depth greater than two layers affect predictions.
Our framework considers a family of networks of varying depths that all have the same capacity but different representation costs.
arXiv Detail & Related papers (2023-05-24T22:10:12Z) - NAR-Former: Neural Architecture Representation Learning towards Holistic
Attributes Prediction [37.357949900603295]
We propose a neural architecture representation model that can be used to estimate attributes holistically.
Experiment results show that our proposed framework can be used to predict the latency and accuracy attributes of both cell architectures and whole deep neural networks.
arXiv Detail & Related papers (2022-11-15T10:15:21Z) - Go Beyond Multiple Instance Neural Networks: Deep-learning Models based
on Local Pattern Aggregation [0.0]
convolutional neural networks (CNNs) have brought breakthroughs in processing clinical electrocardiograms (ECGs) and speaker-independent speech.
In this paper, we propose local pattern aggregation-based deep-learning models to effectively deal with both problems.
The novel network structure, called LPANet, has cropping and aggregation operations embedded into it.
arXiv Detail & Related papers (2022-05-28T13:18:18Z) - Deep Architecture Connectivity Matters for Its Convergence: A
Fine-Grained Analysis [94.64007376939735]
We theoretically characterize the impact of connectivity patterns on the convergence of deep neural networks (DNNs) under gradient descent training.
We show that by a simple filtration on "unpromising" connectivity patterns, we can trim down the number of models to evaluate.
arXiv Detail & Related papers (2022-05-11T17:43:54Z) - Spatio-Temporal Inception Graph Convolutional Networks for
Skeleton-Based Action Recognition [126.51241919472356]
We design a simple and highly modularized graph convolutional network architecture for skeleton-based action recognition.
Our network is constructed by repeating a building block that aggregates multi-granularity information from both the spatial and temporal paths.
arXiv Detail & Related papers (2020-11-26T14:43:04Z) - Understanding Self-supervised Learning with Dual Deep Networks [74.92916579635336]
We propose a novel framework to understand contrastive self-supervised learning (SSL) methods that employ dual pairs of deep ReLU networks.
We prove that in each SGD update of SimCLR with various loss functions, the weights at each layer are updated by a emphcovariance operator.
To further study what role the covariance operator plays and which features are learned in such a process, we model data generation and augmentation processes through a emphhierarchical latent tree model (HLTM)
arXiv Detail & Related papers (2020-10-01T17:51:49Z) - Dual-constrained Deep Semi-Supervised Coupled Factorization Network with
Enriched Prior [80.5637175255349]
We propose a new enriched prior based Dual-constrained Deep Semi-Supervised Coupled Factorization Network, called DS2CF-Net.
To ex-tract hidden deep features, DS2CF-Net is modeled as a deep-structure and geometrical structure-constrained neural network.
Our network can obtain state-of-the-art performance for representation learning and clustering.
arXiv Detail & Related papers (2020-09-08T13:10:21Z) - Network Adjustment: Channel Search Guided by FLOPs Utilization Ratio [101.84651388520584]
This paper presents a new framework named network adjustment, which considers network accuracy as a function of FLOPs.
Experiments on standard image classification datasets and a wide range of base networks demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2020-04-06T15:51:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.