Quantum scrambling with classical shadows
- URL: http://arxiv.org/abs/2102.01008v1
- Date: Mon, 1 Feb 2021 17:37:39 GMT
- Title: Quantum scrambling with classical shadows
- Authors: Roy J. Garcia and You Zhou and Arthur Jaffe
- Abstract summary: The four-point out-of-time-ordered correlator (OTOC) is traditionally used to quantify quantum information scrambling under many-body dynamics.
Due to the OTOC's unusual time ordering, its measurement is challenging.
We propose higher-point OTOCs to reveal early-time scrambling behavior, and present protocols to measure any higher-point OTOC.
- Score: 1.3496380954381821
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum dynamics is of fundamental interest and has implications in quantum
information processing. The four-point out-of-time-ordered correlator (OTOC) is
traditionally used to quantify quantum information scrambling under many-body
dynamics. Due to the OTOC's unusual time ordering, its measurement is
challenging. We propose higher-point OTOCs to reveal early-time scrambling
behavior, and present protocols to measure any higher-point OTOC using the
shadow estimation method. The protocols circumvent the need for time-reversal
evolution and ancillary control. They can be implemented in near-term quantum
devices with single-qubit readout.
Related papers
- A robust approach for time-bin encoded photonic quantum information protocols [0.0]
Quantum states encoded in the time-bin degree of freedom of photons represent a fundamental resource for quantum information protocols.
Traditional methods for generating and measuring time-bin encoded quantum states face severe challenges due to optical instabilities, complex setups, and timing resolution requirements.
We propose a robust and scalable protocol to generate and measure high-dimensional time-bin quantum states in a single spatial mode.
arXiv Detail & Related papers (2024-04-24T18:00:54Z) - On Reducing the Execution Latency of Superconducting Quantum Processors via Quantum Program Scheduling [48.142860424323395]
We introduce the Quantum Program Scheduling Problem (QPSP) to improve the utility efficiency of quantum resources.
Specifically, a quantum program scheduling method concerning the circuit width, number of measurement shots, and submission time of quantum programs is proposed to reduce the execution latency.
arXiv Detail & Related papers (2024-04-11T16:12:01Z) - Hybrid quantum transfer learning for crack image classification on NISQ
hardware [62.997667081978825]
We present an application of quantum transfer learning for detecting cracks in gray value images.
We compare the performance and training time of PennyLane's standard qubits with IBM's qasm_simulator and real backends.
arXiv Detail & Related papers (2023-07-31T14:45:29Z) - Higher-order Process Matrix Tomography of a passively-stable Quantum
SWITCH [0.0]
The quantum SWITCH is an example of a higher-order quantum operation.
No higher-order quantum operation has been completely experimentally characterized.
We create a new passively-stable fiber-based quantum SWITCH using active optical elements to deterministically generate and manipulate time-bin encoded qubits.
arXiv Detail & Related papers (2023-05-30T20:00:03Z) - Anticipative measurements in hybrid quantum-classical computation [68.8204255655161]
We present an approach where the quantum computation is supplemented by a classical result.
Taking advantage of its anticipation also leads to a new type of quantum measurements, which we call anticipative.
In an anticipative quantum measurement the combination of the results from classical and quantum computations happens only in the end.
arXiv Detail & Related papers (2022-09-12T15:47:44Z) - Quantifying information scrambling via Classical Shadow Tomography on
Programmable Quantum Simulators [0.0]
We develop techniques to probe the dynamics of quantum information, and implement them experimentally on an IBM superconducting quantum processor.
We identify two unambiguous signatures of quantum information scrambling, neither of which can be mimicked by dissipative processes.
We measure both signatures, and support our results with numerical simulations of the quantum system.
arXiv Detail & Related papers (2022-02-10T16:36:52Z) - Quantum jump metrology in a two-cavity network [0.0]
In interferometry, quantum physics is used to enhance measurement precision.
An alternative approach is quantum metrology jump [L. A. Clark et al., Phys A 99, 022102] which deduces information by continuously monitoring an open quantum system.
It is shown that the proposed approach can exceed the standard quantum limit without the need for complex quantum states being scalable.
arXiv Detail & Related papers (2022-01-12T10:53:24Z) - Learning Temporal Quantum Tomography [0.0]
Quantifying and verifying the control level in preparing a quantum state are central challenges in building quantum devices.
We develop a practical and approximate tomography method using a recurrent machine learning framework.
We demonstrate our algorithms for quantum learning tasks followed by the proposal of a quantum short-term memory capacity to evaluate the temporal processing ability of near-term quantum devices.
arXiv Detail & Related papers (2021-03-25T17:01:24Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Quantum information spreading in a disordered quantum walk [50.591267188664666]
We design a quantum probing protocol using Quantum Walks to investigate the Quantum Information spreading pattern.
We focus on the coherent static and dynamic disorder to investigate anomalous and classical transport.
Our results show that a Quantum Walk can be considered as a readout device of information about defects and perturbations occurring in complex networks.
arXiv Detail & Related papers (2020-10-20T20:03:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.