Quantum process inference for a single qubit Maxwell's demon
- URL: http://arxiv.org/abs/2102.01089v3
- Date: Thu, 17 Jun 2021 13:55:08 GMT
- Title: Quantum process inference for a single qubit Maxwell's demon
- Authors: Xingrui Song, Mahdi Naghiloo, and Kater Murch
- Abstract summary: We highlight the usage of quantum process matrices as a unified language for describing thermodynamic processes in the quantum regime.
We experimentally demonstrate this in the context of a quantum Maxwell's demon, where two major quantities are commonly investigated.
We develop the optimal feedback protocols for these two quantities and experimentally investigate them in a superconducting circuit QED setup.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While quantum measurement theories are built around density matrices and
observables, the laws of thermodynamics are based on processes such as are used
in heat engines and refrigerators. The study of quantum thermodynamics fuses
these two distinct paradigms. In this article, we highlight the usage of
quantum process matrices as a unified language for describing thermodynamic
processes in the quantum regime. We experimentally demonstrate this in the
context of a quantum Maxwell's demon, where two major quantities are commonly
investigated; the average work extraction $\langle W \rangle$ and the efficacy
$\gamma$ which measures how efficiently the feedback operation uses the
obtained information. Using the tool of quantum process matrices, we develop
the optimal feedback protocols for these two quantities and experimentally
investigate them in a superconducting circuit QED setup.
Related papers
- Experimental realization of a quantum heat engine based on dissipation-engineered superconducting circuits [0.0]
We experimentally demonstrate a quantum heat engine based on superconducting circuits.
We implement a quantum Otto cycle by a tailored drive on the QCR to sequentially induce cooling and heating.
We measure positive output powers and efficiencies that agree with our simulations of the quantum evolution.
arXiv Detail & Related papers (2025-02-27T14:34:29Z) - Quantum non-Markovianity, quantum coherence and extractable work in a
general quantum process [0.0]
Key concept in quantum thermodynamics is extractable work, which specifies the maximum amount of work that can be extracted from a quantum system.
Different quantities are used to measure extractable work, the most prevalent of which are ergotropy and the difference between the non-equilibrium and equilibrium quantum free energy.
We investigate the evolution of extractable work when an open quantum system goes through a general quantum process described by a completely-positive and trace-preserving dynamical map.
arXiv Detail & Related papers (2023-09-10T11:05:35Z) - Model-free optimization of power/efficiency tradeoffs in quantum thermal
machines using reinforcement learning [0.0]
A quantum thermal machine is an open quantum system that enables the conversion between heat and work at the micro or nano-scale.
We introduce a general model-free framework based on Reinforcement Learning to identify out-of-equilibrium thermodynamic cycles.
arXiv Detail & Related papers (2022-04-10T22:44:28Z) - Implementation of a two-stroke quantum heat engine with a collisional
model [50.591267188664666]
We put forth a quantum simulation of a stroboscopic two-stroke thermal engine in the IBMQ processor.
The system consists of a quantum spin chain connected to two baths at their boundaries, prepared at different temperatures using the variational quantum thermalizer algorithm.
arXiv Detail & Related papers (2022-03-25T16:55:08Z) - Experimental verification of fluctuation relations with a quantum
computer [68.8204255655161]
We use a quantum processor to experimentally validate a number of theoretical results in non-equilibrium quantum thermodynamics.
Our experiments constitute the experimental basis for the understanding of the non-equilibrium energetics of quantum computation.
arXiv Detail & Related papers (2021-06-08T14:16:12Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Engineering analog quantum chemistry Hamiltonians using cold atoms in
optical lattices [69.50862982117127]
We benchmark the working conditions of the numerically analog simulator and find less demanding experimental setups.
We also provide a deeper understanding of the errors of the simulation appearing due to discretization and finite size effects.
arXiv Detail & Related papers (2020-11-28T11:23:06Z) - Quantum field thermal machines [0.0]
We present a detailed proposal how to realize a quantum machine in one-dimensional ultra-cold atomic gases.
We propose models for compression on the system to use it as a piston, and coupling to a bath that gives rise to a valve controlling heat flow.
The active cooling achieved in this way can operate in regimes where existing cooling methods become ineffective.
arXiv Detail & Related papers (2020-06-01T18:08:57Z) - Quantifying the quantum heat contribution from a driven superconducting
circuit [0.0]
We propose a two-reservoir setup to detect the quantum component in the heat flow exchanged by a coherently driven atom with its thermal environment.
tuning the driving parameters switches on and off the quantum and classical contributions to the heat flows, enabling their independent characterization.
arXiv Detail & Related papers (2020-01-28T14:38:32Z) - Thermodynamics of Optical Bloch Equations [0.0]
We study the coherent exchange of energy between a quantum bit (qubit) and a quasi-resonant driving field in the presence of a thermal bath.
We coarse-grain the obtained expressions, using a methodology similar to the derivation of the dynamical master equation.
Our findings can be readily extended to larger open quantum systems.
arXiv Detail & Related papers (2020-01-22T14:37:05Z) - Simulation of Thermal Relaxation in Spin Chemistry Systems on a Quantum
Computer Using Inherent Qubit Decoherence [53.20999552522241]
We seek to take advantage of qubit decoherence as a resource in simulating the behavior of real world quantum systems.
We present three methods for implementing the thermal relaxation.
We find excellent agreement between our results, experimental data, and the theoretical prediction.
arXiv Detail & Related papers (2020-01-03T11:48:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.