Time Adaptive Gaussian Model
- URL: http://arxiv.org/abs/2102.01238v2
- Date: Wed, 3 Feb 2021 15:56:36 GMT
- Title: Time Adaptive Gaussian Model
- Authors: Federico Ciech, Veronica Tozzo
- Abstract summary: Our model is a generalization of state-of-the-art methods for the inference of temporal graphical models.
It performs pattern recognition by clustering data points in time; and, it finds probabilistic (and possibly causal) relationships among the observed variables.
- Score: 0.913755431537592
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multivariate time series analysis is becoming an integral part of data
analysis pipelines. Understanding the individual time point connections between
covariates as well as how these connections change in time is non-trivial. To
this aim, we propose a novel method that leverages on Hidden Markov Models and
Gaussian Graphical Models -- Time Adaptive Gaussian Model (TAGM). Our model is
a generalization of state-of-the-art methods for the inference of temporal
graphical models, its formulation leverages on both aspects of these models
providing better results than current methods. In particular,it performs
pattern recognition by clustering data points in time; and, it finds
probabilistic (and possibly causal) relationships among the observed variables.
Compared to current methods for temporal network inference, it reduces the
basic assumptions while still showing good inference performances.
Related papers
- ChiroDiff: Modelling chirographic data with Diffusion Models [132.5223191478268]
We introduce a powerful model-class namely "Denoising Diffusion Probabilistic Models" or DDPMs for chirographic data.
Our model named "ChiroDiff", being non-autoregressive, learns to capture holistic concepts and therefore remains resilient to higher temporal sampling rate.
arXiv Detail & Related papers (2023-04-07T15:17:48Z) - Score-based Continuous-time Discrete Diffusion Models [102.65769839899315]
We extend diffusion models to discrete variables by introducing a Markov jump process where the reverse process denoises via a continuous-time Markov chain.
We show that an unbiased estimator can be obtained via simple matching the conditional marginal distributions.
We demonstrate the effectiveness of the proposed method on a set of synthetic and real-world music and image benchmarks.
arXiv Detail & Related papers (2022-11-30T05:33:29Z) - An Interpretable and Efficient Infinite-Order Vector Autoregressive
Model for High-Dimensional Time Series [1.4939176102916187]
This paper proposes a novel sparse infinite-order VAR model for high-dimensional time series.
The temporal and cross-sectional structures of the VARMA-type dynamics captured by this model can be interpreted separately.
Greater statistical efficiency and interpretability can be achieved with little loss of temporal information.
arXiv Detail & Related papers (2022-09-02T17:14:24Z) - Wasserstein multivariate auto-regressive models for modeling distributional time series [0.0]
We propose a new auto-regressive model for the statistical analysis of multivariate distributional time series.
Results on the existence, uniqueness and stationarity of the solution of such a model are provided.
To shed some light on the benefits of our approach for real data analysis, we also apply this methodology to a data set made of observations from age distribution in different countries.
arXiv Detail & Related papers (2022-07-12T10:18:36Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
We propose a novel non-autoregressive deep learning model, called Multi-scale Attention Normalizing Flow(MANF)
Our model avoids the influence of cumulative error and does not increase the time complexity.
Our model achieves state-of-the-art performance on many popular multivariate datasets.
arXiv Detail & Related papers (2022-05-16T07:53:42Z) - Closed-form Continuous-Depth Models [99.40335716948101]
Continuous-depth neural models rely on advanced numerical differential equation solvers.
We present a new family of models, termed Closed-form Continuous-depth (CfC) networks, that are simple to describe and at least one order of magnitude faster.
arXiv Detail & Related papers (2021-06-25T22:08:51Z) - Analysis and modeling to forecast in time series: a systematic review [0.0]
This paper surveys state-of-the-art methods and models dedicated to time series analysis and modeling, with the final aim of prediction.
This review aims to offer a structured and comprehensive view of the full process flow, and encompasses time series decomposition, stationary tests, modeling and forecasting.
arXiv Detail & Related papers (2021-03-31T23:48:46Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
We present a Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) model for robust estimation and anomaly detection of time series.
Our model parameterizes mean and variance for each time-stamp with flexible neural networks.
We show the effectiveness of our model on both synthetic datasets and public real-world benchmarks.
arXiv Detail & Related papers (2021-02-02T06:15:15Z) - The temporal overfitting problem with applications in wind power curve
modeling [8.057262184815636]
We propose a new method to tackle the temporal overfitting problem.
Our specific application in this paper targets the power curve modeling in wind energy.
arXiv Detail & Related papers (2020-12-02T17:39:57Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
Current autoencoder-based disentangled representation learning methods achieve disentanglement by penalizing the ( aggregate) posterior to encourage statistical independence of the latent factors.
We present a novel multi-stage modeling approach where the disentangled factors are first learned using a penalty-based disentangled representation learning method.
Then, the low-quality reconstruction is improved with another deep generative model that is trained to model the missing correlated latent variables.
arXiv Detail & Related papers (2020-10-25T18:51:15Z) - Pattern Similarity-based Machine Learning Methods for Mid-term Load
Forecasting: A Comparative Study [0.0]
We use pattern similarity-based methods for forecasting monthly electricity demand expressing annual seasonality.
An integral part of the models is the time series representation using patterns of time series sequences.
We consider four such models: nearest neighbor model, fuzzy neighborhood model, kernel regression model and general regression neural network.
arXiv Detail & Related papers (2020-03-03T12:14:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.