Learning Crisp Boundaries Using Deep Refinement Network and Adaptive
Weighting Loss
- URL: http://arxiv.org/abs/2102.01301v1
- Date: Tue, 2 Feb 2021 04:22:35 GMT
- Title: Learning Crisp Boundaries Using Deep Refinement Network and Adaptive
Weighting Loss
- Authors: Yi-Jun Cao, Chuan Lin, and Yong-Jie Li
- Abstract summary: Recent boundary detection models focus on "crisp" boundaries (precisely localized along the object's contour)
We propose a novel network named deep refinement network (DRNet) that stacks multiple refinement modules to achieve richer feature representation and a novel loss function.
Experimental results demonstrated that we achieve state-of-the-art performance for several available datasets.
- Score: 15.867750740607864
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Significant progress has been made in boundary detection with the help of
convolutional neural networks. Recent boundary detection models not only focus
on real object boundary detection but also "crisp" boundaries (precisely
localized along the object's contour). There are two methods to evaluate crisp
boundary performance. One uses more strict tolerance to measure the distance
between the ground truth and the detected contour. The other focuses on
evaluating the contour map without any postprocessing. In this study, we
analyze both methods and conclude that both methods are two aspects of crisp
contour evaluation. Accordingly, we propose a novel network named deep
refinement network (DRNet) that stacks multiple refinement modules to achieve
richer feature representation and a novel loss function, which combines
cross-entropy and dice loss through effective adaptive fusion. Experimental
results demonstrated that we achieve state-of-the-art performance for several
available datasets.
Related papers
- Learning to utilize image second-order derivative information for crisp edge detection [13.848361661516595]
Edge detection is a fundamental task in computer vision.
Recent top-performing edge detection methods tend to generate thick and noisy edge lines.
We propose a second-order derivative-based multi-scale contextual enhancement module (SDMCM) to help the model locate true edge pixels accurately.
We also construct a hybrid focal loss function (HFL) to alleviate the imbalanced distribution issue.
In the end, we propose a U-shape network named LUS-Net which is based on the SDMCM and BRM for edge detection.
arXiv Detail & Related papers (2024-06-09T13:25:02Z) - X-PDNet: Accurate Joint Plane Instance Segmentation and Monocular Depth
Estimation with Cross-Task Distillation and Boundary Correction [9.215384107659665]
X-PDNet is a framework for the multitask learning of plane instance segmentation and depth estimation.
We highlight the current limitations of using the ground truth boundary to develop boundary regression loss.
We propose a novel method that exploits depth information to support precise boundary region segmentation.
arXiv Detail & Related papers (2023-09-15T14:27:54Z) - Push-the-Boundary: Boundary-aware Feature Propagation for Semantic
Segmentation of 3D Point Clouds [0.5249805590164901]
We propose a boundary-aware feature propagation mechanism to improve semantic segmentation near object boundaries.
With one shared encoder, our network outputs (i) boundary localization, (ii) prediction of directions pointing to the object's interior, and (iii) semantic segmentation, in three parallel streams.
Our proposed approach yields consistent improvements by reducing boundary errors.
arXiv Detail & Related papers (2022-12-23T15:42:01Z) - High-resolution Iterative Feedback Network for Camouflaged Object
Detection [128.893782016078]
Spotting camouflaged objects that are visually assimilated into the background is tricky for object detection algorithms.
We aim to extract the high-resolution texture details to avoid the detail degradation that causes blurred vision in edges and boundaries.
We introduce a novel HitNet to refine the low-resolution representations by high-resolution features in an iterative feedback manner.
arXiv Detail & Related papers (2022-03-22T11:20:21Z) - Active Boundary Loss for Semantic Segmentation [58.72057610093194]
This paper proposes a novel active boundary loss for semantic segmentation.
It can progressively encourage the alignment between predicted boundaries and ground-truth boundaries during end-to-end training.
Experimental results show that training with the active boundary loss can effectively improve the boundary F-score and mean Intersection-over-Union.
arXiv Detail & Related papers (2021-02-04T15:47:54Z) - Contrastive Rendering for Ultrasound Image Segmentation [59.23915581079123]
The lack of sharp boundaries in US images remains an inherent challenge for segmentation.
We propose a novel and effective framework to improve boundary estimation in US images.
Our proposed method outperforms state-of-the-art methods and has the potential to be used in clinical practice.
arXiv Detail & Related papers (2020-10-10T07:14:03Z) - Binary Neural Networks: A Survey [126.67799882857656]
The binary neural network serves as a promising technique for deploying deep models on resource-limited devices.
The binarization inevitably causes severe information loss, and even worse, its discontinuity brings difficulty to the optimization of the deep network.
We present a survey of these algorithms, mainly categorized into the native solutions directly conducting binarization, and the optimized ones using techniques like minimizing the quantization error, improving the network loss function, and reducing the gradient error.
arXiv Detail & Related papers (2020-03-31T16:47:20Z) - DeepStrip: High Resolution Boundary Refinement [60.00241966809684]
We propose to convert regions of interest into strip images and compute a boundary prediction in the strip domain.
To detect the target boundary, we present a framework with two prediction layers.
We enforce a matching consistency and C0 continuity regularization to the network to reduce false alarms.
arXiv Detail & Related papers (2020-03-25T22:44:48Z) - Saliency Enhancement using Gradient Domain Edges Merging [65.90255950853674]
We develop a method to merge the edges with the saliency maps to improve the performance of the saliency.
This leads to our proposed saliency enhancement using edges (SEE) with an average improvement of at least 3.4 times higher on the DUT-OMRON dataset.
The SEE algorithm is split into 2 parts, SEE-Pre for preprocessing and SEE-Post pour postprocessing.
arXiv Detail & Related papers (2020-02-11T14:04:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.