Tooth Instance Segmentation from Cone-Beam CT Images through Point-based
Detection and Gaussian Disentanglement
- URL: http://arxiv.org/abs/2102.01315v1
- Date: Tue, 2 Feb 2021 05:15:50 GMT
- Title: Tooth Instance Segmentation from Cone-Beam CT Images through Point-based
Detection and Gaussian Disentanglement
- Authors: Jusang Lee, Minyoung Chung, Minkyung Lee, Yeong-Gil Shin
- Abstract summary: We propose a point-based tooth localization network that disentangles each individual tooth based on a Gaussian disentanglement objective function.
Experimental results demonstrate that the proposed algorithm outperforms state-of-the-art approaches by increasing the average precision of detection by 9.1%.
- Score: 5.937871999460492
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Individual tooth segmentation and identification from cone-beam computed
tomography images are preoperative prerequisites for orthodontic treatments.
Instance segmentation methods using convolutional neural networks have
demonstrated ground-breaking results on individual tooth segmentation tasks,
and are used in various medical imaging applications. While point-based
detection networks achieve superior results on dental images, it is still a
challenging task to distinguish adjacent teeth because of their similar
topologies and proximate nature. In this study, we propose a point-based tooth
localization network that effectively disentangles each individual tooth based
on a Gaussian disentanglement objective function. The proposed network first
performs heatmap regression accompanied by box regression for all the
anatomical teeth. A novel Gaussian disentanglement penalty is employed by
minimizing the sum of the pixel-wise multiplication of the heatmaps for all
adjacent teeth pairs. Subsequently, individual tooth segmentation is performed
by converting a pixel-wise labeling task to a distance map regression task to
minimize false positives in adjacent regions of the teeth. Experimental results
demonstrate that the proposed algorithm outperforms state-of-the-art approaches
by increasing the average precision of detection by 9.1%, which results in a
high performance in terms of individual tooth segmentation. The primary
significance of the proposed method is two-fold: 1) the introduction of a
point-based tooth detection framework that does not require additional
classification and 2) the design of a novel loss function that effectively
separates Gaussian distributions based on heatmap responses in the point-based
detection framework.
Related papers
- Processing and Segmentation of Human Teeth from 2D Images using Weakly
Supervised Learning [1.6385815610837167]
We propose a weakly supervised approach for teeth segmentation that reduces the need for manual annotation.
Our method utilizes the output heatmaps and intermediate feature maps from a keypoint detection network to guide the segmentation process.
Our method offers a cost-effective and efficient solution for teeth segmentation in real-world dental applications.
arXiv Detail & Related papers (2023-11-13T15:25:55Z) - Domain Adaptive Synapse Detection with Weak Point Annotations [63.97144211520869]
We present AdaSyn, a framework for domain adaptive synapse detection with weak point annotations.
In the WASPSYN challenge at I SBI 2023, our method ranks the 1st place.
arXiv Detail & Related papers (2023-08-31T05:05:53Z) - Multilayer Multiset Neuronal Networks -- MMNNs [55.2480439325792]
The present work describes multilayer multiset neuronal networks incorporating two or more layers of coincidence similarity neurons.
The work also explores the utilization of counter-prototype points, which are assigned to the image regions to be avoided.
arXiv Detail & Related papers (2023-08-28T12:55:13Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
We propose a two-stream graph convolutional network (i.e., TSGCN) to handle inter-view confusion between different raw attributes.
Our TSGCN significantly outperforms state-of-the-art methods in 3D tooth (surface) segmentation.
arXiv Detail & Related papers (2022-04-19T10:41:09Z) - Tooth Instance Segmentation on Panoramic Dental Radiographs Using U-Nets
and Morphological Processing [0.0]
We propose a post-processing stage to obtain a segmentation map in which the objects in the image are separated.
The proposed post-processing stages reduce the mean error of tooth count to 6.15%, whereas the error without post-processing is 26.81%.
arXiv Detail & Related papers (2022-03-31T21:11:51Z) - Developing a Novel Approach for Periapical Dental Radiographs
Segmentation [1.332560004325655]
The proposed algorithm is made of two stages. The first stage is pre-processing.
The second and main part of this algorithm calculated rotation degree and uses the integral projection method for tooth isolation.
Experimental results show that this algorithm is robust and achieves high accuracy.
arXiv Detail & Related papers (2021-11-13T17:25:35Z) - Two-Stage Mesh Deep Learning for Automated Tooth Segmentation and
Landmark Localization on 3D Intraoral Scans [56.55092443401416]
emphiMeshSegNet in the first stage of TS-MDL reached an averaged Dice similarity coefficient (DSC) at 0.953pm0.076$, significantly outperforming the original MeshSegNet.
PointNet-Reg achieved a mean absolute error (MAE) of $0.623pm0.718, mm$ in distances between the prediction and ground truth for $44$ landmarks, which is superior compared with other networks for landmark detection.
arXiv Detail & Related papers (2021-09-24T13:00:26Z) - TSGCNet: Discriminative Geometric Feature Learning with Two-Stream
GraphConvolutional Network for 3D Dental Model Segmentation [141.2690520327948]
We propose a two-stream graph convolutional network (TSGCNet) to learn multi-view information from different geometric attributes.
We evaluate our proposed TSGCNet on a real-patient dataset of dental models acquired by 3D intraoral scanners.
arXiv Detail & Related papers (2020-12-26T08:02:56Z) - Weakly Supervised Deep Nuclei Segmentation Using Partial Points
Annotation in Histopathology Images [51.893494939675314]
We propose a novel weakly supervised segmentation framework based on partial points annotation.
We show that our method can achieve competitive performance compared to the fully supervised counterpart and the state-of-the-art methods.
arXiv Detail & Related papers (2020-07-10T15:41:29Z) - Individual Tooth Detection and Identification from Dental Panoramic
X-Ray Images via Point-wise Localization and Distance Regularization [10.877276642014515]
The proposed network initially performs center point regression for all the anatomical teeth, which automatically identifies each tooth.
Teeth boxes are individually localized using a cascaded neural network on a patch basis.
The experimental results demonstrate that the proposed algorithm outperforms state-of-the-art approaches.
arXiv Detail & Related papers (2020-04-12T04:14:14Z) - Pose-Aware Instance Segmentation Framework from Cone Beam CT Images for
Tooth Segmentation [9.880428545498662]
Individual tooth segmentation from cone beam computed tomography (CBCT) images is essential for an anatomical understanding of orthodontic structures.
The presence of severe metal artifacts in CBCT images hinders the accurate segmentation of each individual tooth.
We propose a neural network for pixel-wise labeling to exploit an instance segmentation framework that is robust to metal artifacts.
arXiv Detail & Related papers (2020-02-06T07:57:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.