Tooth Instance Segmentation on Panoramic Dental Radiographs Using U-Nets
and Morphological Processing
- URL: http://arxiv.org/abs/2204.00095v1
- Date: Thu, 31 Mar 2022 21:11:51 GMT
- Title: Tooth Instance Segmentation on Panoramic Dental Radiographs Using U-Nets
and Morphological Processing
- Authors: Selahattin Serdar Helli, Andac Hamamci
- Abstract summary: We propose a post-processing stage to obtain a segmentation map in which the objects in the image are separated.
The proposed post-processing stages reduce the mean error of tooth count to 6.15%, whereas the error without post-processing is 26.81%.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Automatic teeth segmentation in panoramic x-ray images is an important
research subject of the image analysis in dentistry. In this study, we propose
a post-processing stage to obtain a segmentation map in which the objects in
the image are separated, and apply this technique to tooth instance
segmentation with U-Net network. The post-processing consists of grayscale
morphological and filtering operations, which are applied to the sigmoid output
of the network before binarization. A dice overlap score of 95.4 - 0.3% is
obtained in overall teeth segmentation. The proposed post-processing stages
reduce the mean error of tooth count to 6.15%, whereas the error without
post-processing is 26.81%. The performances of both segmentation and tooth
counting are the highest in the literature, to our knowledge. Moreover, this is
achieved by using a relatively small training dataset, which consists of 105
images. Although the aim in this study is to segment tooth instances, the
presented method is applicable to similar problems in other domains, such as
separating the cell instances
Related papers
- Processing and Segmentation of Human Teeth from 2D Images using Weakly
Supervised Learning [1.6385815610837167]
We propose a weakly supervised approach for teeth segmentation that reduces the need for manual annotation.
Our method utilizes the output heatmaps and intermediate feature maps from a keypoint detection network to guide the segmentation process.
Our method offers a cost-effective and efficient solution for teeth segmentation in real-world dental applications.
arXiv Detail & Related papers (2023-11-13T15:25:55Z) - Multiclass Segmentation using Teeth Attention Modules for Dental X-ray
Images [8.041659727964305]
We propose a novel teeth segmentation model incorporating an M-Net-like structure with Swin Transformers and TAB.
The proposed TAB utilizes a unique attention mechanism that focuses specifically on the complex structures of teeth.
The proposed architecture effectively captures local and global contextual information, accurately defining each tooth and its surrounding structures.
arXiv Detail & Related papers (2023-11-07T06:20:34Z) - Diffusion-based Data Augmentation for Nuclei Image Segmentation [68.28350341833526]
We introduce the first diffusion-based augmentation method for nuclei segmentation.
The idea is to synthesize a large number of labeled images to facilitate training the segmentation model.
The experimental results show that by augmenting 10% labeled real dataset with synthetic samples, one can achieve comparable segmentation results.
arXiv Detail & Related papers (2023-10-22T06:16:16Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
We propose a self-supervised correction learning paradigm for semi-supervised biomedical image segmentation.
We design a dual-task network, including a shared encoder and two independent decoders for segmentation and lesion region inpainting.
Experiments on three medical image segmentation datasets for different tasks demonstrate the outstanding performance of our method.
arXiv Detail & Related papers (2023-01-12T08:19:46Z) - Simultaneous Bone and Shadow Segmentation Network using Task
Correspondence Consistency [60.378180265885945]
We propose a single end-to-end network with a shared transformer-based encoder and task independent decoders for simultaneous bone and shadow segmentation.
We also introduce a correspondence consistency loss which makes sure that network utilizes the inter-dependency between the bone surface and its corresponding shadow to refine the segmentation.
arXiv Detail & Related papers (2022-06-16T22:37:05Z) - Development of an algorithm for medical image segmentation of bone
tissue in interaction with metallic implants [58.720142291102135]
This study develops an algorithm for calculating bone growth in contact with metallic implants.
Bone and implant tissue were manually segmented in the training data set.
In terms of network accuracy, the model reached around 98%.
arXiv Detail & Related papers (2022-04-22T08:17:20Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
We propose a two-stream graph convolutional network (i.e., TSGCN) to handle inter-view confusion between different raw attributes.
Our TSGCN significantly outperforms state-of-the-art methods in 3D tooth (surface) segmentation.
arXiv Detail & Related papers (2022-04-19T10:41:09Z) - Developing a Novel Approach for Periapical Dental Radiographs
Segmentation [1.332560004325655]
The proposed algorithm is made of two stages. The first stage is pre-processing.
The second and main part of this algorithm calculated rotation degree and uses the integral projection method for tooth isolation.
Experimental results show that this algorithm is robust and achieves high accuracy.
arXiv Detail & Related papers (2021-11-13T17:25:35Z) - Two-Stage Mesh Deep Learning for Automated Tooth Segmentation and
Landmark Localization on 3D Intraoral Scans [56.55092443401416]
emphiMeshSegNet in the first stage of TS-MDL reached an averaged Dice similarity coefficient (DSC) at 0.953pm0.076$, significantly outperforming the original MeshSegNet.
PointNet-Reg achieved a mean absolute error (MAE) of $0.623pm0.718, mm$ in distances between the prediction and ground truth for $44$ landmarks, which is superior compared with other networks for landmark detection.
arXiv Detail & Related papers (2021-09-24T13:00:26Z) - Tooth Instance Segmentation from Cone-Beam CT Images through Point-based
Detection and Gaussian Disentanglement [5.937871999460492]
We propose a point-based tooth localization network that disentangles each individual tooth based on a Gaussian disentanglement objective function.
Experimental results demonstrate that the proposed algorithm outperforms state-of-the-art approaches by increasing the average precision of detection by 9.1%.
arXiv Detail & Related papers (2021-02-02T05:15:50Z) - Pose-Aware Instance Segmentation Framework from Cone Beam CT Images for
Tooth Segmentation [9.880428545498662]
Individual tooth segmentation from cone beam computed tomography (CBCT) images is essential for an anatomical understanding of orthodontic structures.
The presence of severe metal artifacts in CBCT images hinders the accurate segmentation of each individual tooth.
We propose a neural network for pixel-wise labeling to exploit an instance segmentation framework that is robust to metal artifacts.
arXiv Detail & Related papers (2020-02-06T07:57:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.