論文の概要: Enterprise domain ontology learning from web-based corpus
- arxiv url: http://arxiv.org/abs/2102.01498v1
- Date: Fri, 29 Jan 2021 17:08:29 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-03 16:52:47.766411
- Title: Enterprise domain ontology learning from web-based corpus
- Title(参考訳): Web ベースコーパスから学ぶエンタープライズドメインオントロジー
- Authors: Andrei Vasilateanu, Nicolae Goga, Elena-Alice Tanase, Iuliana Marin
- Abstract要約: 暗黙的かつ明示的な知識を学び、保存し、配布する能力は、成功と失敗の違いである。
本稿では,企業における関連文書の自動生成ドメインに基づく検索エンジンを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Enterprise knowledge is a key asset in the competing and fast-changing
corporate landscape. The ability to learn, store and distribute implicit and
explicit knowledge can be the difference between success and failure. While
enterprise knowledge management is a well-defined research domain, current
implementations lack orientation towards small and medium enterprise. We
propose a semantic search engine for relevant documents in an enterprise, based
on automatic generated domain ontologies. In this paper we focus on the
component for ontology learning and population.
- Abstract(参考訳): 企業知識は競争の激しい企業環境において重要な資産である。
暗黙的で明示的な知識を学び、保存し、配布する能力は、成功と失敗の違いです。
エンタープライズ・ナレッジ・マネジメントは明確に定義された研究分野であるが、現在の実装では中小企業への方向性が欠けている。
本稿では,自動生成ドメインオントロジーに基づく企業内の関連文書のセマンティック検索エンジンを提案する。
本稿では、オントロジー学習と人口の構成要素に焦点を当てる。
関連論文リスト
- JEL: Applying End-to-End Neural Entity Linking in JPMorgan Chase [3.4311229392863467]
本稿では、最小限のコンテキスト情報とマージン損失を利用してエンティティ埋め込みを生成する、新しいエンドツーエンドニューラルネットワークリンクモデル(JEL)を提案する。
我々は、JELが金融ニュースの企業名と知識グラフのエンティティをリンクすることで、最先端のパフォーマンスを実現していることを示す。
論文 参考訳(メタデータ) (2024-11-05T00:46:25Z) - Named Entity Recognition Under Domain Shift via Metric Learning for Life Sciences [55.185456382328674]
名前付きエンティティ認識モデルの拡張のための転写学習の適用性について検討する。
本モデルでは,(1)アノテートイベントからの知識を付加してエンティティ間の関係を確立するソースドメインにおけるエンティティグループ化,2) 対象ドメインにおけるエンティティの識別を擬似ラベリングとコントラスト学習に頼って,2つのドメイン内のエンティティ間の識別を強化する,という2つの段階で構成されている。
論文 参考訳(メタデータ) (2024-01-19T03:49:28Z) - Beyond Factuality: A Comprehensive Evaluation of Large Language Models
as Knowledge Generators [78.63553017938911]
大規模言語モデル(LLM)は、下流の知識集約タスクのための情報検索技術より優れている。
しかし、コミュニティの懸念は、この無検閲の知識を使用することの事実と潜在的意味について多岐にわたる。
本研究では,6つの重要な視点から生成した知識を評価するために設計されたCONNERを紹介する。
論文 参考訳(メタデータ) (2023-10-11T08:22:37Z) - Reorganizing Educational Institutional Domain using Faceted Ontological
Principles [0.0]
本研究は,図書館分類システムと言語手法の違いが,特定の分野にどのような影響を及ぼすかを明らかにすることを目的とする。
特定のドメイン固有のオントロジーには、知識表現と言語を使用します。
この構造は問題解決の助けとなるだけでなく、複雑なクエリを簡単に扱えることを示すのにも役立ちます。
論文 参考訳(メタデータ) (2023-06-17T09:06:07Z) - Graph Enabled Cross-Domain Knowledge Transfer [1.52292571922932]
クロスドメイン・ナレッジ・トランスファー(クロスドメイン・ナレッジ・トランスファー)は、優れた表現学習と関心領域における知識不足のギャップを軽減するためのアプローチである。
機械学習の観点からは、半教師付き学習のパラダイムは、基礎的な真実なしに大量のデータを活用し、目覚ましい学習性能向上を実現する。
論文 参考訳(メタデータ) (2023-04-07T03:02:10Z) - Knowledge-augmented Deep Learning and Its Applications: A Survey [60.221292040710885]
知識強化ディープラーニング(KADL)は、ドメイン知識を特定し、それをデータ効率、一般化可能、解釈可能なディープラーニングのためのディープモデルに統合することを目的としている。
本調査は,既存の研究成果を補足し,知識強化深層学習の一般分野における鳥眼研究の展望を提供する。
論文 参考訳(メタデータ) (2022-11-30T03:44:15Z) - Imitation Learning-based Implicit Semantic-aware Communication Networks:
Multi-layer Representation and Collaborative Reasoning [68.63380306259742]
有望な可能性にもかかわらず、セマンティック通信とセマンティック・アウェア・ネットワーキングはまだ初期段階にある。
本稿では,CDCとエッジサーバの複数層を連携させる,推論に基づく暗黙的セマンティック・アウェア通信ネットワークアーキテクチャを提案する。
暗黙的セマンティクスの階層構造と個人ユーザのパーソナライズされた推論嗜好を考慮に入れたセマンティクス情報の多層表現を提案する。
論文 参考訳(メタデータ) (2022-10-28T13:26:08Z) - Introduction to the Artificial Intelligence that can be applied to the
Network Automation Journey [68.8204255655161]
Intent-Based Networking - Concepts and Definitions"ドキュメントには、NetDevOpsに関わる可能性のあるエコシステムのさまざまな部分について記述されている。
認識、生成、翻訳、精巧な機能には、アルゴリズムを実装するための新しい方法が必要だ。
論文 参考訳(メタデータ) (2022-04-02T08:12:08Z) - Online Structured Meta-learning [137.48138166279313]
現在のオンラインメタ学習アルゴリズムは、グローバルに共有されたメタラーナーを学ぶために限られている。
この制限を克服するオンライン構造化メタラーニング(OSML)フレームワークを提案する。
3つのデータセットの実験は、提案フレームワークの有効性と解釈可能性を示している。
論文 参考訳(メタデータ) (2020-10-22T09:10:31Z) - On the Merging of Domain-Specific Heterogeneous Ontologies using Wordnet
and Web Pattern-based Queries [0.0]
我々は,コミュニティ間の共通ドメインの形式的,明示的,共有的な概念化と理解の提供を目指しています。
オントロジーは特定の領域の概念とその制約を明示的に定義することができる。
論文 参考訳(メタデータ) (2020-04-30T05:03:50Z) - Coupling semantic and statistical techniques for dynamically enriching
web ontologies [0.0]
本稿では,World Wide Web から大規模ジェネリックを動的に強化するための,自動結合型統計・セマンティックフレームワークを提案する。
このアプローチの利点は, (i) 背景知識の欠如による大規模セマンティック・パターンのダイナミック・エンリッチメントを提案し, このような知識の再利用を可能にすることである。
論文 参考訳(メタデータ) (2020-04-23T11:21:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。