Guidance on the Assurance of Machine Learning in Autonomous Systems
(AMLAS)
- URL: http://arxiv.org/abs/2102.01564v1
- Date: Tue, 2 Feb 2021 15:41:57 GMT
- Title: Guidance on the Assurance of Machine Learning in Autonomous Systems
(AMLAS)
- Authors: Richard Hawkins, Colin Paterson, Chiara Picardi, Yan Jia, Radu
Calinescu and Ibrahim Habli
- Abstract summary: We introduce a methodology for the Assurance of Machine Learning for use in Autonomous Systems (AMLAS)
AMLAS comprises a set of safety case patterns and a process for integrating safety assurance into the development of ML components.
- Score: 16.579772998870233
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine Learning (ML) is now used in a range of systems with results that are
reported to exceed, under certain conditions, human performance. Many of these
systems, in domains such as healthcare , automotive and manufacturing, exhibit
high degrees of autonomy and are safety critical. Establishing justified
confidence in ML forms a core part of the safety case for these systems. In
this document we introduce a methodology for the Assurance of Machine Learning
for use in Autonomous Systems (AMLAS). AMLAS comprises a set of safety case
patterns and a process for (1) systematically integrating safety assurance into
the development of ML components and (2) for generating the evidence base for
explicitly justifying the acceptable safety of these components when integrated
into autonomous system applications.
Related papers
- Towards Guaranteed Safe AI: A Framework for Ensuring Robust and Reliable AI Systems [88.80306881112313]
We will introduce and define a family of approaches to AI safety, which we will refer to as guaranteed safe (GS) AI.
The core feature of these approaches is that they aim to produce AI systems which are equipped with high-assurance quantitative safety guarantees.
We outline a number of approaches for creating each of these three core components, describe the main technical challenges, and suggest a number of potential solutions to them.
arXiv Detail & Related papers (2024-05-10T17:38:32Z) - Empowering Autonomous Driving with Large Language Models: A Safety Perspective [82.90376711290808]
This paper explores the integration of Large Language Models (LLMs) into Autonomous Driving systems.
LLMs are intelligent decision-makers in behavioral planning, augmented with a safety verifier shield for contextual safety learning.
We present two key studies in a simulated environment: an adaptive LLM-conditioned Model Predictive Control (MPC) and an LLM-enabled interactive behavior planning scheme with a state machine.
arXiv Detail & Related papers (2023-11-28T03:13:09Z) - Ergo, SMIRK is Safe: A Safety Case for a Machine Learning Component in a
Pedestrian Automatic Emergency Brake System [5.571920596648914]
Integration of Machine Learning (ML) components in critical applications introduces novel challenges for software certification and verification.
New safety standards and technical guidelines are under development to support the safety of ML-based systems.
We report results from an industry-academia collaboration on safety assurance of SMIRK, an ML-based pedestrian automatic emergency braking demonstrator.
arXiv Detail & Related papers (2022-04-16T21:28:50Z) - Reliability Assessment and Safety Arguments for Machine Learning
Components in Assuring Learning-Enabled Autonomous Systems [19.65793237440738]
We present an overall assurance framework for Learning-Enabled Systems (LES)
We then introduce a novel model-agnostic Reliability Assessment Model (RAM) for ML classifiers.
We discuss the model assumptions and the inherent challenges of assessing ML reliability uncovered by our RAM.
arXiv Detail & Related papers (2021-11-30T14:39:22Z) - SoK: Machine Learning Governance [16.36671448193025]
We develop the concept of ML governance to balance such benefits and risks.
We use identities to hold principals accountable for failures of ML systems.
We highlight the need for techniques that allow a model owner to manage the life cycle of their system.
arXiv Detail & Related papers (2021-09-20T17:56:22Z) - Multi Agent System for Machine Learning Under Uncertainty in Cyber
Physical Manufacturing System [78.60415450507706]
Recent advancements in predictive machine learning has led to its application in various use cases in manufacturing.
Most research focused on maximising predictive accuracy without addressing the uncertainty associated with it.
In this paper, we determine the sources of uncertainty in machine learning and establish the success criteria of a machine learning system to function well under uncertainty.
arXiv Detail & Related papers (2021-07-28T10:28:05Z) - Technology Readiness Levels for Machine Learning Systems [107.56979560568232]
Development and deployment of machine learning systems can be executed easily with modern tools, but the process is typically rushed and means-to-an-end.
We have developed a proven systems engineering approach for machine learning development and deployment.
Our "Machine Learning Technology Readiness Levels" framework defines a principled process to ensure robust, reliable, and responsible systems.
arXiv Detail & Related papers (2021-01-11T15:54:48Z) - Towards a Robust and Trustworthy Machine Learning System Development [0.09236074230806578]
We present our recent survey on the state-of-the-art ML trustworthiness and technologies from a security engineering perspective.
We then push our studies forward above and beyond a survey by describing a metamodel we created that represents the body of knowledge in a standard and visualized way for ML practitioners.
We propose future research directions motivated by our findings to advance the development of robust and trustworthy ML systems.
arXiv Detail & Related papers (2021-01-08T14:43:58Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
Despite great potential, machine learning in security is prone to subtle pitfalls that undermine its performance.
We identify common pitfalls in the design, implementation, and evaluation of learning-based security systems.
We propose actionable recommendations to support researchers in avoiding or mitigating the pitfalls where possible.
arXiv Detail & Related papers (2020-10-19T13:09:31Z) - Technology Readiness Levels for AI & ML [79.22051549519989]
Development of machine learning systems can be executed easily with modern tools, but the process is typically rushed and means-to-an-end.
Engineering systems follow well-defined processes and testing standards to streamline development for high-quality, reliable results.
We propose a proven systems engineering approach for machine learning development and deployment.
arXiv Detail & Related papers (2020-06-21T17:14:34Z) - Quantifying Assurance in Learning-enabled Systems [3.0938904602244355]
Dependability assurance of systems embedding machine learning components is a key step for their use in safety-critical applications.
This paper develops a quantitative notion of assurance that an LES is dependable, as a core component of its assurance case.
We illustrate the utility of assurance measures by application to a real world autonomous aviation system.
arXiv Detail & Related papers (2020-06-18T08:11:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.