Technology Readiness Levels for AI & ML
- URL: http://arxiv.org/abs/2006.12497v3
- Date: Wed, 16 Dec 2020 14:47:51 GMT
- Title: Technology Readiness Levels for AI & ML
- Authors: Alexander Lavin and Gregory Renard
- Abstract summary: Development of machine learning systems can be executed easily with modern tools, but the process is typically rushed and means-to-an-end.
Engineering systems follow well-defined processes and testing standards to streamline development for high-quality, reliable results.
We propose a proven systems engineering approach for machine learning development and deployment.
- Score: 79.22051549519989
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The development and deployment of machine learning systems can be executed
easily with modern tools, but the process is typically rushed and
means-to-an-end. The lack of diligence can lead to technical debt, scope creep
and misaligned objectives, model misuse and failures, and expensive
consequences. Engineering systems, on the other hand, follow well-defined
processes and testing standards to streamline development for high-quality,
reliable results. The extreme is spacecraft systems, where mission critical
measures and robustness are ingrained in the development process. Drawing on
experience in both spacecraft engineering and AI/ML (from research through
product), we propose a proven systems engineering approach for machine learning
development and deployment. Our Technology Readiness Levels for ML (TRL4ML)
framework defines a principled process to ensure robust systems while being
streamlined for ML research and product, including key distinctions from
traditional software engineering. Even more, TRL4ML defines a common language
for people across the organization to work collaboratively on ML technologies.
Related papers
- Towards Trustworthy Machine Learning in Production: An Overview of the Robustness in MLOps Approach [0.0]
In recent years, AI researchers and practitioners have introduced principles and guidelines to build systems that make reliable and trustworthy decisions.
In practice, a fundamental challenge arises when the system needs to be operationalized and deployed to evolve and operate in real-life environments continuously.
To address this challenge, Machine Learning Operations (MLOps) have emerged as a potential recipe for standardizing ML solutions in deployment.
arXiv Detail & Related papers (2024-10-28T09:34:08Z) - Machine Learning Meets Advanced Robotic Manipulation [48.6221343014126]
The paper reviews cutting edge technologies and recent trends on machine learning methods applied to real-world manipulation tasks.
The rest of the paper is devoted to ML applications in different domains such as industry, healthcare, agriculture, space, military, and search and rescue.
arXiv Detail & Related papers (2023-09-22T01:06:32Z) - Achieving Guidance in Applied Machine Learning through Software
Engineering Techniques [0.0]
We look at the (lack of) guidance that currently used development environments and ML APIs provide to developers of ML applications.
We show that current ML tools fall short of fulfilling some basic software engineering gold standards.
Our findings point out ample opportunities for research on ML-specific software engineering.
arXiv Detail & Related papers (2022-03-29T12:54:57Z) - Enabling Automated Machine Learning for Model-Driven AI Engineering [60.09869520679979]
We propose a novel approach to enable Model-Driven Software Engineering and Model-Driven AI Engineering.
In particular, we support Automated ML, thus assisting software engineers without deep AI knowledge in developing AI-intensive systems.
arXiv Detail & Related papers (2022-03-06T10:12:56Z) - Panoramic Learning with A Standardized Machine Learning Formalism [116.34627789412102]
This paper presents a standardized equation of the learning objective, that offers a unifying understanding of diverse ML algorithms.
It also provides guidance for mechanic design of new ML solutions, and serves as a promising vehicle towards panoramic learning with all experiences.
arXiv Detail & Related papers (2021-08-17T17:44:38Z) - Technology Readiness Levels for Machine Learning Systems [107.56979560568232]
Development and deployment of machine learning systems can be executed easily with modern tools, but the process is typically rushed and means-to-an-end.
We have developed a proven systems engineering approach for machine learning development and deployment.
Our "Machine Learning Technology Readiness Levels" framework defines a principled process to ensure robust, reliable, and responsible systems.
arXiv Detail & Related papers (2021-01-11T15:54:48Z) - Towards a Robust and Trustworthy Machine Learning System Development [0.09236074230806578]
We present our recent survey on the state-of-the-art ML trustworthiness and technologies from a security engineering perspective.
We then push our studies forward above and beyond a survey by describing a metamodel we created that represents the body of knowledge in a standard and visualized way for ML practitioners.
We propose future research directions motivated by our findings to advance the development of robust and trustworthy ML systems.
arXiv Detail & Related papers (2021-01-08T14:43:58Z) - Quality Management of Machine Learning Systems [0.0]
Artificial Intelligence (AI) has become a part of our daily lives due to major advances in Machine Learning (ML) techniques.
For business/mission-critical systems, serious concerns about reliability and maintainability of AI applications remain.
This paper presents a view of a holistic quality management framework for ML applications based on the current advances.
arXiv Detail & Related papers (2020-06-16T21:34:44Z) - Towards CRISP-ML(Q): A Machine Learning Process Model with Quality
Assurance Methodology [53.063411515511056]
We propose a process model for the development of machine learning applications.
The first phase combines business and data understanding as data availability oftentimes affects the feasibility of the project.
The sixth phase covers state-of-the-art approaches for monitoring and maintenance of a machine learning applications.
arXiv Detail & Related papers (2020-03-11T08:25:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.