TAD: Trigger Approximation based Black-box Trojan Detection for AI
- URL: http://arxiv.org/abs/2102.01815v1
- Date: Wed, 3 Feb 2021 00:49:50 GMT
- Title: TAD: Trigger Approximation based Black-box Trojan Detection for AI
- Authors: Xinqiao Zhang, Huili Chen and Farinaz Koushanfar
- Abstract summary: Deep Neural Networks (DNNs) have demonstrated unprecedented performance across various fields such as medical diagnosis and autonomous driving.
They are identified to be vulnerable to Trojan (NT) attacks that are controlled and activated by the trigger.
We propose a robust Trojan detection scheme that inspects whether a pre-trained AI model has been Trojaned before its deployment.
- Score: 16.741385045881113
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: An emerging amount of intelligent applications have been developed with the
surge of Machine Learning (ML). Deep Neural Networks (DNNs) have demonstrated
unprecedented performance across various fields such as medical diagnosis and
autonomous driving. While DNNs are widely employed in security-sensitive
fields, they are identified to be vulnerable to Neural Trojan (NT) attacks that
are controlled and activated by the stealthy trigger. We call this vulnerable
model adversarial artificial intelligence (AI). In this paper, we target to
design a robust Trojan detection scheme that inspects whether a pre-trained AI
model has been Trojaned before its deployment. Prior works are oblivious of the
intrinsic property of trigger distribution and try to reconstruct the trigger
pattern using simple heuristics, i.e., stimulating the given model to incorrect
outputs. As a result, their detection time and effectiveness are limited. We
leverage the observation that the pixel trigger typically features spatial
dependency and propose TAD, the first trigger approximation based Trojan
detection framework that enables fast and scalable search of the trigger in the
input space. Furthermore, TAD can also detect Trojans embedded in the feature
space where certain filter transformations are used to activate the Trojan. We
perform extensive experiments to investigate the performance of the TAD across
various datasets and ML models. Empirical results show that TAD achieves a
ROC-AUC score of 0:91 on the public TrojAI dataset 1 and the average detection
time per model is 7:1 minutes.
Related papers
- FreeEagle: Detecting Complex Neural Trojans in Data-Free Cases [50.065022493142116]
Trojan attack on deep neural networks, also known as backdoor attack, is a typical threat to artificial intelligence.
FreeEagle is the first data-free backdoor detection method that can effectively detect complex backdoor attacks.
arXiv Detail & Related papers (2023-02-28T11:31:29Z) - PerD: Perturbation Sensitivity-based Neural Trojan Detection Framework
on NLP Applications [21.854581570954075]
Trojan attacks embed the backdoor into the victim and is activated by the trigger in the input space.
We propose a model-level Trojan detection framework by analyzing the deviation of the model output when we introduce a specially crafted perturbation to the input.
We demonstrate the effectiveness of our proposed method on both a dataset of NLP models we create and a public dataset of Trojaned NLP models from TrojAI.
arXiv Detail & Related papers (2022-08-08T22:50:03Z) - An Adaptive Black-box Backdoor Detection Method for Deep Neural Networks [25.593824693347113]
Deep Neural Networks (DNNs) have demonstrated unprecedented performance across various fields such as medical diagnosis and autonomous driving.
They are identified to be vulnerable to Neural Trojan (NT) attacks that are controlled and activated by stealthy triggers.
We propose a robust and adaptive Trojan detection scheme that inspects whether a pre-trained model has been Trojaned before its deployment.
arXiv Detail & Related papers (2022-04-08T23:41:19Z) - Trigger Hunting with a Topological Prior for Trojan Detection [16.376009231934884]
This paper tackles the problem of Trojan detection, namely, identifying Trojaned models.
One popular approach is reverse engineering, recovering the triggers on a clean image by manipulating the model's prediction.
One major challenge of reverse engineering approach is the enormous search space of triggers.
We propose innovative priors such as diversity and topological simplicity to not only increase the chances of finding the appropriate triggers but also improve the quality of the found triggers.
arXiv Detail & Related papers (2021-10-15T19:47:00Z) - DAAIN: Detection of Anomalous and Adversarial Input using Normalizing
Flows [52.31831255787147]
We introduce a novel technique, DAAIN, to detect out-of-distribution (OOD) inputs and adversarial attacks (AA)
Our approach monitors the inner workings of a neural network and learns a density estimator of the activation distribution.
Our model can be trained on a single GPU making it compute efficient and deployable without requiring specialized accelerators.
arXiv Detail & Related papers (2021-05-30T22:07:13Z) - Detecting Trojaned DNNs Using Counterfactual Attributions [15.988574580713328]
Such models behave normally with typical inputs but produce specific incorrect predictions for inputs with a Trojan trigger.
Our approach is based on a novel observation that the trigger behavior depends on a few ghost neurons that activate on trigger pattern.
We use this information for Trojan detection by using a deep set encoder.
arXiv Detail & Related papers (2020-12-03T21:21:33Z) - Practical Detection of Trojan Neural Networks: Data-Limited and
Data-Free Cases [87.69818690239627]
We study the problem of the Trojan network (TrojanNet) detection in the data-scarce regime.
We propose a data-limited TrojanNet detector (TND), when only a few data samples are available for TrojanNet detection.
In addition, we propose a data-free TND, which can detect a TrojanNet without accessing any data samples.
arXiv Detail & Related papers (2020-07-31T02:00:38Z) - Cassandra: Detecting Trojaned Networks from Adversarial Perturbations [92.43879594465422]
In many cases, pre-trained models are sourced from vendors who may have disrupted the training pipeline to insert Trojan behaviors into the models.
We propose a method to verify if a pre-trained model is Trojaned or benign.
Our method captures fingerprints of neural networks in the form of adversarial perturbations learned from the network gradients.
arXiv Detail & Related papers (2020-07-28T19:00:40Z) - Odyssey: Creation, Analysis and Detection of Trojan Models [91.13959405645959]
Trojan attacks interfere with the training pipeline by inserting triggers into some of the training samples and trains the model to act maliciously only for samples that contain the trigger.
Existing Trojan detectors make strong assumptions about the types of triggers and attacks.
We propose a detector that is based on the analysis of the intrinsic properties; that are affected due to the Trojaning process.
arXiv Detail & Related papers (2020-07-16T06:55:00Z) - Scalable Backdoor Detection in Neural Networks [61.39635364047679]
Deep learning models are vulnerable to Trojan attacks, where an attacker can install a backdoor during training time to make the resultant model misidentify samples contaminated with a small trigger patch.
We propose a novel trigger reverse-engineering based approach whose computational complexity does not scale with the number of labels, and is based on a measure that is both interpretable and universal across different network and patch types.
In experiments, we observe that our method achieves a perfect score in separating Trojaned models from pure models, which is an improvement over the current state-of-the art method.
arXiv Detail & Related papers (2020-06-10T04:12:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.