FreeEagle: Detecting Complex Neural Trojans in Data-Free Cases
- URL: http://arxiv.org/abs/2302.14500v1
- Date: Tue, 28 Feb 2023 11:31:29 GMT
- Title: FreeEagle: Detecting Complex Neural Trojans in Data-Free Cases
- Authors: Chong Fu, Xuhong Zhang, Shouling Ji, Ting Wang, Peng Lin, Yanghe Feng,
Jianwei Yin
- Abstract summary: Trojan attack on deep neural networks, also known as backdoor attack, is a typical threat to artificial intelligence.
FreeEagle is the first data-free backdoor detection method that can effectively detect complex backdoor attacks.
- Score: 50.065022493142116
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Trojan attack on deep neural networks, also known as backdoor attack, is a
typical threat to artificial intelligence. A trojaned neural network behaves
normally with clean inputs. However, if the input contains a particular
trigger, the trojaned model will have attacker-chosen abnormal behavior.
Although many backdoor detection methods exist, most of them assume that the
defender has access to a set of clean validation samples or samples with the
trigger, which may not hold in some crucial real-world cases, e.g., the case
where the defender is the maintainer of model-sharing platforms. Thus, in this
paper, we propose FreeEagle, the first data-free backdoor detection method that
can effectively detect complex backdoor attacks on deep neural networks,
without relying on the access to any clean samples or samples with the trigger.
The evaluation results on diverse datasets and model architectures show that
FreeEagle is effective against various complex backdoor attacks, even
outperforming some state-of-the-art non-data-free backdoor detection methods.
Related papers
- Backdoor Defense via Deconfounded Representation Learning [17.28760299048368]
We propose a Causality-inspired Backdoor Defense (CBD) to learn deconfounded representations for reliable classification.
CBD is effective in reducing backdoor threats while maintaining high accuracy in predicting benign samples.
arXiv Detail & Related papers (2023-03-13T02:25:59Z) - Untargeted Backdoor Attack against Object Detection [69.63097724439886]
We design a poison-only backdoor attack in an untargeted manner, based on task characteristics.
We show that, once the backdoor is embedded into the target model by our attack, it can trick the model to lose detection of any object stamped with our trigger patterns.
arXiv Detail & Related papers (2022-11-02T17:05:45Z) - An anomaly detection approach for backdoored neural networks: face
recognition as a case study [77.92020418343022]
We propose a novel backdoored network detection method based on the principle of anomaly detection.
We test our method on a novel dataset of backdoored networks and report detectability results with perfect scores.
arXiv Detail & Related papers (2022-08-22T12:14:13Z) - Invisible Backdoor Attacks Using Data Poisoning in the Frequency Domain [8.64369418938889]
We propose a generalized backdoor attack method based on the frequency domain.
It can implement backdoor implantation without mislabeling and accessing the training process.
We evaluate our approach in the no-label and clean-label cases on three datasets.
arXiv Detail & Related papers (2022-07-09T07:05:53Z) - Adversarial Fine-tuning for Backdoor Defense: Connect Adversarial
Examples to Triggered Samples [15.57457705138278]
We propose a new Adversarial Fine-Tuning (AFT) approach to erase backdoor triggers.
AFT can effectively erase the backdoor triggers without obvious performance degradation on clean samples.
arXiv Detail & Related papers (2022-02-13T13:41:15Z) - Black-box Detection of Backdoor Attacks with Limited Information and
Data [56.0735480850555]
We propose a black-box backdoor detection (B3D) method to identify backdoor attacks with only query access to the model.
In addition to backdoor detection, we also propose a simple strategy for reliable predictions using the identified backdoored models.
arXiv Detail & Related papers (2021-03-24T12:06:40Z) - Practical Detection of Trojan Neural Networks: Data-Limited and
Data-Free Cases [87.69818690239627]
We study the problem of the Trojan network (TrojanNet) detection in the data-scarce regime.
We propose a data-limited TrojanNet detector (TND), when only a few data samples are available for TrojanNet detection.
In addition, we propose a data-free TND, which can detect a TrojanNet without accessing any data samples.
arXiv Detail & Related papers (2020-07-31T02:00:38Z) - Scalable Backdoor Detection in Neural Networks [61.39635364047679]
Deep learning models are vulnerable to Trojan attacks, where an attacker can install a backdoor during training time to make the resultant model misidentify samples contaminated with a small trigger patch.
We propose a novel trigger reverse-engineering based approach whose computational complexity does not scale with the number of labels, and is based on a measure that is both interpretable and universal across different network and patch types.
In experiments, we observe that our method achieves a perfect score in separating Trojaned models from pure models, which is an improvement over the current state-of-the art method.
arXiv Detail & Related papers (2020-06-10T04:12:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.