論文の概要: Local Critic Training for Model-Parallel Learning of Deep Neural
Networks
- arxiv url: http://arxiv.org/abs/2102.01963v1
- Date: Wed, 3 Feb 2021 09:30:45 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-04 23:18:48.500368
- Title: Local Critic Training for Model-Parallel Learning of Deep Neural
Networks
- Title(参考訳): ディープニューラルネットワークのモデル並列学習のための局所批判訓練
- Authors: Hojung Lee, Cho-Jui Hsieh, Jong-Seok Lee
- Abstract要約: そこで我々は,局所的批判訓練と呼ばれる新しいモデル並列学習手法を提案する。
提案手法は,畳み込みニューラルネットワーク(CNN)とリカレントニューラルネットワーク(RNN)の両方において,階層群の更新プロセスの分離に成功したことを示す。
また,提案手法によりトレーニングされたネットワークを構造最適化に利用できることを示す。
- 参考スコア(独自算出の注目度): 94.69202357137452
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we propose a novel model-parallel learning method, called
local critic training, which trains neural networks using additional modules
called local critic networks. The main network is divided into several layer
groups and each layer group is updated through error gradients estimated by the
corresponding local critic network. We show that the proposed approach
successfully decouples the update process of the layer groups for both
convolutional neural networks (CNNs) and recurrent neural networks (RNNs). In
addition, we demonstrate that the proposed method is guaranteed to converge to
a critical point. We also show that trained networks by the proposed method can
be used for structural optimization. Experimental results show that our method
achieves satisfactory performance, reduces training time greatly, and decreases
memory consumption per machine. Code is available at
https://github.com/hjdw2/Local-critic-training.
- Abstract(参考訳): 本稿では,ローカル批判ネットワークと呼ばれる追加モジュールを用いてニューラルネットワークを訓練する,新しいモデル並列学習手法であるlocal critic trainingを提案する。
主ネットワークは複数の層群に分けられ、各層群は対応する局所批評家ネットワークによって推定される誤差勾配によって更新される。
提案手法は,畳み込みニューラルネットワーク(CNN)とリカレントニューラルネットワーク(RNN)の両方において,階層群の更新プロセスの分離に成功したことを示す。
さらに,提案手法は臨界点に収束することが保証されていることを示す。
また,提案手法により学習したネットワークを構造最適化に利用できることを示す。
実験の結果,本手法は良好な性能を示し,トレーニング時間を大幅に短縮し,マシン当たりのメモリ消費量を削減できることがわかった。
コードはhttps://github.com/hjdw2/Local-critic-trainingで入手できる。
関連論文リスト
- Properties and Potential Applications of Random Functional-Linked Types
of Neural Networks [81.56822938033119]
ランダム関数リンクニューラルネットワーク(RFLNN)は、深い構造を学習する別の方法を提供する。
本稿では周波数領域の観点からRFLNNの特性について考察する。
本稿では,より優れた性能でBLSネットワークを生成する手法を提案し,ポゾン方程式を解くための効率的なアルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-04-03T13:25:22Z) - Learning in Feedback-driven Recurrent Spiking Neural Networks using
full-FORCE Training [4.124948554183487]
本稿では,トレーニング中にのみ第2のネットワークを導入するRSNNの教師付きトレーニング手順を提案する。
提案したトレーニング手順は、リカレント層とリードアウト層の両方のターゲットを生成することで構成される。
本研究では,8つの力学系をモデル化するためのフルFORCEトレーニング手法の性能向上とノイズ堅牢性を示す。
論文 参考訳(メタデータ) (2022-05-26T19:01:19Z) - Training Graph Neural Networks by Graphon Estimation [2.5997274006052544]
本稿では,基礎となるネットワークデータから得られたグラフトン推定値から再サンプリングすることで,グラフニューラルネットワークをトレーニングする。
我々のアプローチは競争力があり、多くの場合、他の過度にスムースなGNNトレーニング手法よりも優れています。
論文 参考訳(メタデータ) (2021-09-04T19:21:48Z) - Simultaneous Training of Partially Masked Neural Networks [67.19481956584465]
トレーニングされたフルネットワークから事前定義された'コア'サブネットワークを分割して,優れたパフォーマンスでニューラルネットワークをトレーニングすることが可能であることを示す。
低ランクコアを用いたトランスフォーマーのトレーニングは,低ランクモデル単独のトレーニングよりも優れた性能を有する低ランクモデルが得られることを示す。
論文 参考訳(メタデータ) (2021-06-16T15:57:51Z) - Fast Adaptation with Linearized Neural Networks [35.43406281230279]
ニューラルネットワークの線形化の帰納的バイアスについて検討し,全ネットワーク関数の驚くほどよい要約であることを示した。
この発見に触発されて,これらの帰納的バイアスをネットワークのヤコビアンから設計されたカーネルを通してガウス過程に埋め込む手法を提案する。
この設定では、領域適応は不確実性推定を伴う解釈可能な後方推論の形式を取る。
論文 参考訳(メタデータ) (2021-03-02T03:23:03Z) - Selfish Sparse RNN Training [13.165729746380816]
本稿では,1回のランでパラメータ数を固定したスパースRNNを,性能を損なうことなく訓練する手法を提案する。
我々はPenn TreeBankとWikitext-2の様々なデータセットを用いて最先端のスパーストレーニング結果を得る。
論文 参考訳(メタデータ) (2021-01-22T10:45:40Z) - Multi-fidelity Neural Architecture Search with Knowledge Distillation [69.09782590880367]
ニューラルアーキテクチャ探索のためのベイズ的多重忠実度法 MF-KD を提案する。
知識蒸留は損失関数に追加され、ネットワークが教師ネットワークを模倣することを強制する用語となる。
このような変化した損失関数を持ついくつかのエポックに対するトレーニングは、ロジスティックな損失を持ついくつかのエポックに対するトレーニングよりも、より優れたニューラルアーキテクチャの選択につながることを示す。
論文 参考訳(メタデータ) (2020-06-15T12:32:38Z) - Network Adjustment: Channel Search Guided by FLOPs Utilization Ratio [101.84651388520584]
本稿では,ネットワークの精度をFLOPの関数として考慮した,ネットワーク調整という新しいフレームワークを提案する。
標準画像分類データセットと幅広いベースネットワークの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2020-04-06T15:51:00Z) - Backprojection for Training Feedforward Neural Networks in the Input and
Feature Spaces [12.323996999894002]
本稿では,バックプロパゲーションよりもかなり高速なフィードフォワードニューラルネットワークのトレーニングアルゴリズムを提案する。
提案アルゴリズムは、それぞれバックプロジェクションとカーネルバックプロジェクションと呼ばれる入力空間と特徴空間の両方に利用できる。
論文 参考訳(メタデータ) (2020-04-05T20:53:11Z) - MSE-Optimal Neural Network Initialization via Layer Fusion [68.72356718879428]
ディープニューラルネットワークは、さまざまな分類と推論タスクに対して最先端のパフォーマンスを達成する。
グラデーションと非進化性の組み合わせは、学習を新しい問題の影響を受けやすいものにする。
確率変数を用いて学習した深層ネットワークの近傍層を融合する手法を提案する。
論文 参考訳(メタデータ) (2020-01-28T18:25:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。