Modave Lectures on Quantum Information: An Introduction to Channels and
Applications to Black Holes and AdS/CFT
- URL: http://arxiv.org/abs/2102.02066v2
- Date: Thu, 11 Feb 2021 11:07:39 GMT
- Title: Modave Lectures on Quantum Information: An Introduction to Channels and
Applications to Black Holes and AdS/CFT
- Authors: Aidan Chatwin-Davies
- Abstract summary: We will study channels and their properties, and then go on to formulate quantum error correction in terms of quantum channels.
We will see how a handful of problems in high energy physics, such as the black hole information problem and bulk reconstruction in AdS/CFT, can be cast in the information-theoretic language being set up.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: These notes introduce a handful of core ideas from quantum information
science that figure prominently in modern research on quantum gravity. The
central concept that forms the base of these notes is that of a quantum
channel; that is, the most general physically-reasonable map between quantum
states and between operators on Hilbert space. After reviewing some
fundamentals, we will study channels and their properties, and then go on to
formulate quantum error correction in terms of quantum channels. Along the way,
we will see how a handful of problems in high energy physics, such as the black
hole information problem and bulk reconstruction in AdS/CFT, can be cast in the
information-theoretic language being set up.
Related papers
- Quantum Information Processing with Molecular Nanomagnets: an introduction [49.89725935672549]
We provide an introduction to Quantum Information Processing, focusing on a promising setup for its implementation.
We introduce the basic tools to understand and design quantum algorithms, always referring to their actual realization on a molecular spin architecture.
We present some examples of quantum algorithms proposed and implemented on a molecular spin qudit hardware.
arXiv Detail & Related papers (2024-05-31T16:43:20Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Quantum information and beyond -- with quantum candies [0.0]
We investigate, extend, and greatly expand here "quantum candies" (invented by Jacobs)
"quantum" candies describe some basic concepts in quantum information, including quantum bits, complementarity, the no-cloning principle, and entanglement.
These demonstrations are done in an approachable manner, that can be explained to high-school students, without using the hard-to-grasp concept of superpositions and its mathematics.
arXiv Detail & Related papers (2021-09-30T16:05:33Z) - Towards understanding the power of quantum kernels in the NISQ era [79.8341515283403]
We show that the advantage of quantum kernels is vanished for large size datasets, few number of measurements, and large system noise.
Our work provides theoretical guidance of exploring advanced quantum kernels to attain quantum advantages on NISQ devices.
arXiv Detail & Related papers (2021-03-31T02:41:36Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
We show how to represent linear and non-linear layers as unitary quantum gates, and interpret the fundamental excitations of the quantum model as particles.
On top of opening a new perspective and techniques for studying neural networks, the quantum formulation is well suited for optical quantum computing.
arXiv Detail & Related papers (2021-03-08T17:24:29Z) - Quantum Candies and Quantum Cryptography [0.0]
We investigate, extend, and much expand here "quantum candies" (invented by Jacobs), a pedagogical model for intuitively describing some basic concepts in quantum information.
We explicitly demonstrate various additional quantum cryptography protocols using quantum candies in an approachable manner.
arXiv Detail & Related papers (2020-11-03T21:01:08Z) - One-shot quantum error correction of classical and quantum information [10.957528713294874]
Quantum error correction (QEC) is one of the central concepts in quantum information science.
We provide a form of capacity theorem for both classical and quantum information.
We show that a demonstration of QEC by short random quantum circuits is feasible.
arXiv Detail & Related papers (2020-11-02T01:24:59Z) - Quantum information spreading in a disordered quantum walk [50.591267188664666]
We design a quantum probing protocol using Quantum Walks to investigate the Quantum Information spreading pattern.
We focus on the coherent static and dynamic disorder to investigate anomalous and classical transport.
Our results show that a Quantum Walk can be considered as a readout device of information about defects and perturbations occurring in complex networks.
arXiv Detail & Related papers (2020-10-20T20:03:19Z) - Scrambling and decoding the charged quantum information [8.497925513299606]
We show how the quantum information in the whole system has been represented by its charge sectors.
We discuss possible implications for black hole thought experiments and conjectures about quantum gravity in the dynamical setup.
arXiv Detail & Related papers (2020-03-25T14:32:23Z) - Probing the Universality of Topological Defect Formation in a Quantum
Annealer: Kibble-Zurek Mechanism and Beyond [46.39654665163597]
We report on experimental tests of topological defect formation via the one-dimensional transverse-field Ising model.
We find that the quantum simulator results can indeed be explained by the KZM for open-system quantum dynamics with phase-flip errors.
This implies that the theoretical predictions of the generalized KZM theory, which assumes isolation from the environment, applies beyond its original scope to an open system.
arXiv Detail & Related papers (2020-01-31T02:55:35Z) - Quantum key distribution based on the quantum eraser [0.0]
Quantum information and quantum foundations are becoming popular topics for advanced undergraduate courses.
We show that the quantum eraser, usually used to study the duality between wave and particle properties, can also serve as a generic platform for quantum key distribution.
arXiv Detail & Related papers (2019-07-07T10:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.