One-shot quantum error correction of classical and quantum information
- URL: http://arxiv.org/abs/2011.00668v2
- Date: Mon, 21 Jun 2021 18:08:32 GMT
- Title: One-shot quantum error correction of classical and quantum information
- Authors: Yoshifumi Nakata, Eyuri Wakakuwa, Hayata Yamasaki
- Abstract summary: Quantum error correction (QEC) is one of the central concepts in quantum information science.
We provide a form of capacity theorem for both classical and quantum information.
We show that a demonstration of QEC by short random quantum circuits is feasible.
- Score: 10.957528713294874
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum error correction (QEC) is one of the central concepts in quantum
information science and also has wide applications in fundamental physics. The
capacity theorems provide solid foundations of QEC. We here provide a general
and highly applicable form of capacity theorem for both classical and quantum
information, i.e., hybrid information, with assistance of a limited resource of
entanglement in one-shot scenario, which covers broader situations than the
existing ones. Harnessing the wide applicability of the theorem, we show that a
demonstration of QEC by short random quantum circuits is feasible and that QEC
is intrinsic in quantum chaotic systems. Our results bridge the progress in
quantum information theory, near-future quantum technology, and fundamental
physics.
Related papers
- Does Quantum Mechanics Breed Larger, More Intricate Quantum Theories?
The Case for Experience-Centric Quantum Theory and the Interactome of Quantum
Theories [0.0]
We show that the recently proposed experience-centric quantum theory (ECQT) is a larger and richer theory of quantum behaviors.
ECQT allows the quantum information of the closed quantum system's developed state history to continually contribute to defining manybody interactions.
The interplay of unitarity and non-Markovianity in ECQT brings about a host of diverse behavioral phases.
arXiv Detail & Related papers (2023-08-04T16:33:24Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Theory of Quantum Generative Learning Models with Maximum Mean
Discrepancy [67.02951777522547]
We study learnability of quantum circuit Born machines (QCBMs) and quantum generative adversarial networks (QGANs)
We first analyze the generalization ability of QCBMs and identify their superiorities when the quantum devices can directly access the target distribution.
Next, we prove how the generalization error bound of QGANs depends on the employed Ansatz, the number of qudits, and input states.
arXiv Detail & Related papers (2022-05-10T08:05:59Z) - Quantum Information in Relativity: the Challenge of QFT Measurements [0.0]
Proposed quantum experiments in deep space will be able to explore quantum information issues in regimes where relativistic effects are important.
We argue that a proper extension of Quantum Information theory into the relativistic domain requires the expression of all informational notions.
arXiv Detail & Related papers (2021-11-15T18:48:42Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - Towards understanding the power of quantum kernels in the NISQ era [79.8341515283403]
We show that the advantage of quantum kernels is vanished for large size datasets, few number of measurements, and large system noise.
Our work provides theoretical guidance of exploring advanced quantum kernels to attain quantum advantages on NISQ devices.
arXiv Detail & Related papers (2021-03-31T02:41:36Z) - Probing the limits of quantum theory with quantum information at
subnuclear scales [0.13844779265721088]
We propose a new theoretical framework of Q-data tests.
It recognises the established validity of quantum theory, but allows for more general -- 'post-quantum' -- scenarios in certain physical regimes.
arXiv Detail & Related papers (2021-03-22T16:47:39Z) - Quantum Entropic Causal Inference [30.939150842529052]
We put forth a new theoretical framework for merging quantum information science and causal inference by exploiting entropic principles.
We apply our proposed framework to an experimentally relevant scenario of identifying message senders on quantum noisy links.
arXiv Detail & Related papers (2021-02-23T15:51:34Z) - From a quantum theory to a classical one [117.44028458220427]
We present and discuss a formal approach for describing the quantum to classical crossover.
The method was originally introduced by L. Yaffe in 1982 for tackling large-$N$ quantum field theories.
arXiv Detail & Related papers (2020-04-01T09:16:38Z) - Scrambling and decoding the charged quantum information [8.497925513299606]
We show how the quantum information in the whole system has been represented by its charge sectors.
We discuss possible implications for black hole thought experiments and conjectures about quantum gravity in the dynamical setup.
arXiv Detail & Related papers (2020-03-25T14:32:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.