Uncertain Time Series Classification With Shapelet Transform
- URL: http://arxiv.org/abs/2102.02090v1
- Date: Wed, 3 Feb 2021 14:46:01 GMT
- Title: Uncertain Time Series Classification With Shapelet Transform
- Authors: Michael Franklin Mbouopda and Engelbert Mephu Nguifo
- Abstract summary: Time series classification is a task that aims at classifying chronological data.
We propose a new uncertain dissimilarity measure based on Euclidean distance.
We then propose the uncertain shapelet transform algorithm for the classification of uncertain time series.
- Score: 1.4467794332678539
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Time series classification is a task that aims at classifying chronological
data. It is used in a diverse range of domains such as meteorology, medicine
and physics. In the last decade, many algorithms have been built to perform
this task with very appreciable accuracy. However, applications where time
series have uncertainty has been under-explored. Using uncertainty propagation
techniques, we propose a new uncertain dissimilarity measure based on Euclidean
distance. We then propose the uncertain shapelet transform algorithm for the
classification of uncertain time series. The large experiments we conducted on
state of the art datasets show the effectiveness of our contribution. The
source code of our contribution and the datasets we used are all available on a
public repository.
Related papers
- Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - Physics Informed Shallow Machine Learning for Wind Speed Prediction [66.05661813632568]
We analyze a massive dataset of wind measured from anemometers located at 10 m height in 32 locations in Italy.
We train supervised learning algorithms using the past history of wind to predict its value at a future time.
We find that the optimal design as well as its performance vary with the location.
arXiv Detail & Related papers (2022-04-01T14:55:10Z) - Early Time-Series Classification Algorithms: An Empirical Comparison [59.82930053437851]
Early Time-Series Classification (ETSC) is the task of predicting the class of incoming time-series by observing as few measurements as possible.
We evaluate six existing ETSC algorithms on publicly available data, as well as on two newly introduced datasets.
arXiv Detail & Related papers (2022-03-03T10:43:56Z) - TimeREISE: Time-series Randomized Evolving Input Sample Explanation [5.557646286040063]
TimeREISE is a model attribution method specifically aligned to success in the context of time series classification.
The method shows superior performance compared to existing approaches concerning different well-established measurements.
arXiv Detail & Related papers (2022-02-16T09:40:13Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
estimation of time-varying quantities is a fundamental component of decision making in fields such as healthcare and finance.
We propose a versatile method that estimates joint distributions using an attention-based decoder.
We show that our model produces state-of-the-art predictions on several real-world datasets.
arXiv Detail & Related papers (2022-02-07T21:37:29Z) - The FreshPRINCE: A Simple Transformation Based Pipeline Time Series
Classifier [0.0]
We look at whether the complexity of the algorithms considered state of the art is really necessary.
Many times the first approach suggested is a simple pipeline of summary statistics or other time series feature extraction approaches.
We test these approaches on the UCR time series dataset archive, looking to see if TSC literature has overlooked the effectiveness of these approaches.
arXiv Detail & Related papers (2022-01-28T11:23:58Z) - Time Series Data Mining Algorithms Towards Scalable and Real-Time
Behavior Monitoring [1.0878040851638]
We introduce a hybrid algorithm to classify behaviors, using both shape and feature measures, in weakly labeled time series data collected from sensors.
We demonstrate that our algorithm can robustly classify real, noisy, and complex datasets, based on a combination of shape and features.
arXiv Detail & Related papers (2021-12-26T11:13:52Z) - Time Series Analysis via Network Science: Concepts and Algorithms [62.997667081978825]
This review provides a comprehensive overview of existing mapping methods for transforming time series into networks.
We describe the main conceptual approaches, provide authoritative references and give insight into their advantages and limitations in a unified notation and language.
Although still very recent, this research area has much potential and with this survey we intend to pave the way for future research on the topic.
arXiv Detail & Related papers (2021-10-11T13:33:18Z) - Deep learning for time series classification [2.0305676256390934]
Time series analysis allows us to visualize and understand the evolution of a process over time.
Time series classification consists of constructing algorithms dedicated to automatically label time series data.
Deep learning has emerged as one of the most effective methods for tackling the supervised classification task.
arXiv Detail & Related papers (2020-10-01T17:38:40Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGAN is an unsupervised anomaly detection approach built on Generative Adversarial Networks (GANs)
To capture the temporal correlations of time series, we use LSTM Recurrent Neural Networks as base models for Generators and Critics.
To demonstrate the performance and generalizability of our approach, we test several anomaly scoring techniques and report the best-suited one.
arXiv Detail & Related papers (2020-09-16T15:52:04Z) - Time Series Data Augmentation for Deep Learning: A Survey [35.2161833151567]
We systematically review different data augmentation methods for time series data.
We empirically compare different data augmentation methods for different tasks including time series classification, anomaly detection, and forecasting.
arXiv Detail & Related papers (2020-02-27T23:38:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.