TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks
- URL: http://arxiv.org/abs/2009.07769v3
- Date: Sat, 14 Nov 2020 23:05:29 GMT
- Title: TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks
- Authors: Alexander Geiger, Dongyu Liu, Sarah Alnegheimish, Alfredo
Cuesta-Infante, Kalyan Veeramachaneni
- Abstract summary: TadGAN is an unsupervised anomaly detection approach built on Generative Adversarial Networks (GANs)
To capture the temporal correlations of time series, we use LSTM Recurrent Neural Networks as base models for Generators and Critics.
To demonstrate the performance and generalizability of our approach, we test several anomaly scoring techniques and report the best-suited one.
- Score: 73.01104041298031
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Time series anomalies can offer information relevant to critical situations
facing various fields, from finance and aerospace to the IT, security, and
medical domains. However, detecting anomalies in time series data is
particularly challenging due to the vague definition of anomalies and said
data's frequent lack of labels and highly complex temporal correlations.
Current state-of-the-art unsupervised machine learning methods for anomaly
detection suffer from scalability and portability issues, and may have high
false positive rates. In this paper, we propose TadGAN, an unsupervised anomaly
detection approach built on Generative Adversarial Networks (GANs). To capture
the temporal correlations of time series distributions, we use LSTM Recurrent
Neural Networks as base models for Generators and Critics. TadGAN is trained
with cycle consistency loss to allow for effective time-series data
reconstruction. We further propose several novel methods to compute
reconstruction errors, as well as different approaches to combine
reconstruction errors and Critic outputs to compute anomaly scores. To
demonstrate the performance and generalizability of our approach, we test
several anomaly scoring techniques and report the best-suited one. We compare
our approach to 8 baseline anomaly detection methods on 11 datasets from
multiple reputable sources such as NASA, Yahoo, Numenta, Amazon, and Twitter.
The results show that our approach can effectively detect anomalies and
outperform baseline methods in most cases (6 out of 11). Notably, our method
has the highest averaged F1 score across all the datasets. Our code is open
source and is available as a benchmarking tool.
Related papers
- See it, Think it, Sorted: Large Multimodal Models are Few-shot Time Series Anomaly Analyzers [23.701716999879636]
Time series anomaly detection (TSAD) is becoming increasingly vital due to the rapid growth of time series data.
We introduce a pioneering framework called the Time Series Anomaly Multimodal Analyzer (TAMA) to enhance both the detection and interpretation of anomalies.
arXiv Detail & Related papers (2024-11-04T10:28:41Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - Unraveling the "Anomaly" in Time Series Anomaly Detection: A
Self-supervised Tri-domain Solution [89.16750999704969]
Anomaly labels hinder traditional supervised models in time series anomaly detection.
Various SOTA deep learning techniques, such as self-supervised learning, have been introduced to tackle this issue.
We propose a novel self-supervised learning based Tri-domain Anomaly Detector (TriAD)
arXiv Detail & Related papers (2023-11-19T05:37:18Z) - CARLA: Self-supervised Contrastive Representation Learning for Time Series Anomaly Detection [53.83593870825628]
One main challenge in time series anomaly detection (TSAD) is the lack of labelled data in many real-life scenarios.
Most of the existing anomaly detection methods focus on learning the normal behaviour of unlabelled time series in an unsupervised manner.
We introduce a novel end-to-end self-supervised ContrAstive Representation Learning approach for time series anomaly detection.
arXiv Detail & Related papers (2023-08-18T04:45:56Z) - ALGAN: Time Series Anomaly Detection with Adjusted-LSTM GAN [0.9065034043031667]
Anomaly detection in time series data is a common problem in various domains such as manufacturing, medical imaging, and cybersecurity.
Recently, Generative Adversarial Networks (GANs) are shown to be effective in detecting anomalies in time series data.
We propose a new GAN model, named Adjusted-LSTM GAN (ALGAN), which adjusts the output of an LSTM network for improved anomaly detection.
arXiv Detail & Related papers (2023-08-13T02:17:19Z) - CNTS: Cooperative Network for Time Series [7.356583983200323]
This paper presents a novel approach for unsupervised anomaly detection called the Cooperative Network Time Series approach.
The central aspect of CNTS is a multi-objective optimization problem, which is solved through a cooperative solution strategy.
Experiments on three real-world datasets demonstrate the state-of-the-art performance of CNTS and confirm the cooperative effectiveness of the detector and reconstructor.
arXiv Detail & Related papers (2023-02-20T06:55:10Z) - Are we certain it's anomalous? [57.729669157989235]
Anomaly detection in time series is a complex task since anomalies are rare due to highly non-linear temporal correlations.
Here we propose the novel use of Hyperbolic uncertainty for Anomaly Detection (HypAD)
HypAD learns self-supervisedly to reconstruct the input signal.
arXiv Detail & Related papers (2022-11-16T21:31:39Z) - DEGAN: Time Series Anomaly Detection using Generative Adversarial
Network Discriminators and Density Estimation [0.0]
We have proposed an unsupervised Generative Adversarial Network (GAN)-based anomaly detection framework, DEGAN.
It relies solely on normal time series data as input to train a well-configured discriminator (D) into a standalone anomaly predictor.
arXiv Detail & Related papers (2022-10-05T04:32:12Z) - Causality-Based Multivariate Time Series Anomaly Detection [63.799474860969156]
We formulate the anomaly detection problem from a causal perspective and view anomalies as instances that do not follow the regular causal mechanism to generate the multivariate data.
We then propose a causality-based anomaly detection approach, which first learns the causal structure from data and then infers whether an instance is an anomaly relative to the local causal mechanism.
We evaluate our approach with both simulated and public datasets as well as a case study on real-world AIOps applications.
arXiv Detail & Related papers (2022-06-30T06:00:13Z) - RobustTAD: Robust Time Series Anomaly Detection via Decomposition and
Convolutional Neural Networks [37.16594704493679]
We propose RobustTAD, a Robust Time series Anomaly Detection framework.
It integrates robust seasonal-trend decomposition and convolutional neural network for time series data.
It is deployed as a public online service and widely adopted in different business scenarios at Alibaba Group.
arXiv Detail & Related papers (2020-02-21T20:43:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.