論文の概要: Outlier-Robust Learning of Ising Models Under Dobrushin's Condition
- arxiv url: http://arxiv.org/abs/2102.02171v1
- Date: Wed, 3 Feb 2021 18:00:57 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-04 17:35:17.419771
- Title: Outlier-Robust Learning of Ising Models Under Dobrushin's Condition
- Title(参考訳): ドブルシン条件下でのIsingモデルのアウトリーヤ・ロバスト学習
- Authors: Ilias Diakonikolas and Daniel M. Kane and Alistair Stewart and Yuxin
Sun
- Abstract要約: 本研究では, サンプルの一定割合が逆向きに破壊されるような外乱条件下で, ドブルシンの条件を満たすIsingモデルの学習問題について検討する。
我々の主な成果は、ほぼ最適誤差保証を伴うこの問題に対して、計算効率のよい最初の頑健な学習アルゴリズムを提供することである。
- 参考スコア(独自算出の注目度): 57.89518300699042
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the problem of learning Ising models satisfying Dobrushin's
condition in the outlier-robust setting where a constant fraction of the
samples are adversarially corrupted. Our main result is to provide the first
computationally efficient robust learning algorithm for this problem with
near-optimal error guarantees. Our algorithm can be seen as a special case of
an algorithm for robustly learning a distribution from a general exponential
family. To prove its correctness for Ising models, we establish new
anti-concentration results for degree-$2$ polynomials of Ising models that may
be of independent interest.
- Abstract(参考訳): 本研究では,試料の一定割合が敵対的に破損している外乱設定において,ドブルシンの条件を満たす学習イジングモデルの問題について検討する。
私たちの主な結果は、最適に近いエラー保証でこの問題のための最初の計算効率の高い堅牢な学習アルゴリズムを提供することです。
我々のアルゴリズムは、一般指数族から分布を頑健に学習するアルゴリズムの特別な場合と見なすことができる。
イジングモデルの正しさを証明するため、独立な関心を持つかもしれないイジングモデルの次数 2$ の多項式に対する新しい反集中結果を確立する。
関連論文リスト
- Model Stealing for Any Low-Rank Language Model [25.16701867917684]
我々は、単純で数学的に計算可能な設定を研究することによって、言語モデルを盗むという理論的理解を構築する。
我々の主な成果は、低ランク分布を学習するための条件付きクエリモデルにおける効率的なアルゴリズムである。
これは、少なくとも理論的には、推論時に機械学習モデルがより複雑な問題を解くことができるという興味深い例である。
論文 参考訳(メタデータ) (2024-11-12T04:25:31Z) - Optimal Robust Estimation under Local and Global Corruptions: Stronger Adversary and Smaller Error [10.266928164137635]
アルゴリズムによる頑健な統計は伝統的に、サンプルのごく一部が任意に破損する汚染モデルに焦点を当ててきた。
最近の汚染モデルでは, (i) 古典的ロバスト統計のように, 任意の外れ値のごく一部と (ii) 局所摂動, (ii) サンプルが平均的に有界シフトを行うことのできる2種類の汚染モデルを考える。
理論上最適誤差は, 偶発的局所摂動モデルの下で, 時間内に得られることを示す。
論文 参考訳(メタデータ) (2024-10-22T17:51:23Z) - Supervised learning with probabilistic morphisms and kernel mean
embeddings [0.0]
本稿では,教師あり学習における2つのアプローチを統一した教師あり学習モデルを提案する。
統計的学習理論において無視されてきた2つの測定可能性問題に対処する。
不正な問題を解くために,Vapnik-Stefanuykの正規化手法の変種を提案する。
論文 参考訳(メタデータ) (2023-05-10T17:54:21Z) - Oracle Inequalities for Model Selection in Offline Reinforcement
Learning [105.74139523696284]
本稿では,値関数近似を用いたオフラインRLにおけるモデル選択の問題について検討する。
対数係数まで最小値の速度-最適不等式を実現するオフラインRLの最初のモデル選択アルゴリズムを提案する。
そこで本研究では,優れたモデルクラスを確実に選択できることを示す数値シミュレーションを行った。
論文 参考訳(メタデータ) (2022-11-03T17:32:34Z) - Generalization of Neural Combinatorial Solvers Through the Lens of
Adversarial Robustness [68.97830259849086]
ほとんどのデータセットは単純なサブプロブレムのみをキャプチャし、おそらくは突発的な特徴に悩まされる。
本研究では, 局所的な一般化特性である対向ロバスト性について検討し, 厳密でモデル固有な例と突発的な特徴を明らかにする。
他のアプリケーションとは異なり、摂動モデルは知覚できないという主観的な概念に基づいて設計されているため、摂動モデルは効率的かつ健全である。
驚くべきことに、そのような摂動によって、十分に表現力のあるニューラルソルバは、教師あり学習で共通する正確さと悪質さのトレードオフの限界に悩まされない。
論文 参考訳(メタデータ) (2021-10-21T07:28:11Z) - Agnostic Proper Learning of Halfspaces under Gaussian Marginals [56.01192577666607]
ガウスの下の半空間を不可知的に学習する問題を考察する。
我々の主な成果は、この問題に対するエム第一固有学習アルゴリズムである。
論文 参考訳(メタデータ) (2021-02-10T18:40:44Z) - Robust Unsupervised Learning via L-Statistic Minimization [38.49191945141759]
教師なし学習に焦点をあて、この問題に対する一般的なアプローチを提示する。
重要な仮定は、摂動分布は、許容モデルの特定のクラスに対するより大きな損失によって特徴付けられることである。
教師なし学習におけるいくつかのポピュラーモデルに対する提案基準に関して,一様収束境界を証明した。
論文 参考訳(メタデータ) (2020-12-14T10:36:06Z) - Sample-Optimal and Efficient Learning of Tree Ising models [24.201827888085944]
最適な$O(n ln n/epsilon2)$サンプルから,$n$-variable tree-structured Isingモデルが全変動距離$epsilon$の範囲内で計算効率良く学習可能であることを示す。
我々の保証は、Chow-Liuアルゴリズムの既知の結果に従わない。
論文 参考訳(メタデータ) (2020-10-28T10:17:48Z) - Goal-directed Generation of Discrete Structures with Conditional
Generative Models [85.51463588099556]
本稿では,強化学習目標を直接最適化し,期待される報酬を最大化するための新しいアプローチを提案する。
提案手法は、ユーザ定義プロパティを持つ分子の生成と、所定の目標値を評価する短いピソン表現の同定という2つのタスクで検証する。
論文 参考訳(メタデータ) (2020-10-05T20:03:13Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
補間分類器間のテストエラーの完全な分布を正確に計算する手法を開発した。
テストエラーは、最悪の補間モデルのテストエラーから大きく逸脱する、小さな典型的な$varepsilon*$に集中する傾向にある。
以上の結果から,統計的学習理論における通常の解析手法は,実際に観測された優れた一般化性能を捉えるのに十分な粒度にはならない可能性が示唆された。
論文 参考訳(メタデータ) (2020-06-22T21:12:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。