Generalized probability and current densities: A field theory approach
- URL: http://arxiv.org/abs/2102.02565v1
- Date: Thu, 4 Feb 2021 11:56:36 GMT
- Title: Generalized probability and current densities: A field theory approach
- Authors: M. Izadparast and S. Habib Mazharimousavi
- Abstract summary: We introduce a generalized Lagrangian density for a quantum particle with the generalized momentum operator.
The extended probability and particle current densities are found which satisfy the continuity equation.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a generalized Lagrangian density - involving a non-Hermitian
kinetic term - for a quantum particle with the generalized momentum operator.
Upon variation of the Lagrangian, we obtain the corresponding Schrodinger
equation. The extended probability and particle current densities are found
which satisfy the continuity equation.
Related papers
- Quantum Particle Statistics in Classical Shallow Water Waves [4.995343972237369]
We show that when locally oscillating particles are guided by real wave gradients, particles may exhibit trajectories of alternating periodic or chaotic dynamics.
The particle probability distribution function of this analogy reveals the quantum statistics of the standard solutions of the Schr"odinger equation.
arXiv Detail & Related papers (2024-09-29T09:40:19Z) - A non-hermitean momentum operator for the particle in a box [49.1574468325115]
We show how to construct the corresponding hermitean Hamiltonian for the infinite as well as concrete example.
The resulting Hilbert space can be decomposed into a physical and unphysical subspace.
arXiv Detail & Related papers (2024-03-20T12:51:58Z) - Quantum mechanics without quantum potentials [0.0]
Non-locality in quantum mechanics can be resolved by considering relativistically covariant diffusion in spacetime.
We introduce the concept of momentum equilinear to replace the second-order Bohm-Newton equations of motion.
arXiv Detail & Related papers (2024-01-08T18:51:38Z) - Free particle trapped in an infinite quantum well examined through the
discrete calculus model [0.0]
We use the discrete approach to solve the Schr"odinger equations for a free particle and the quantum gas of free particles embedded in an infinite quantum well with the finite width.
We obtain the expressions of energy eigenvalues, the eigenfunctions as well as the density matrix and partition function for the discrete case.
arXiv Detail & Related papers (2023-03-14T20:10:18Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Born's rule and permutation invariance [0.0]
It is shown that the probability density satisfies a hyperbolic equation of motion with the unique characteristic that in its many-particle form it contains derivatives acting at spatially remote regions.
arXiv Detail & Related papers (2022-06-22T17:58:02Z) - Correspondence Between the Energy Equipartition Theorem in Classical
Mechanics and its Phase-Space Formulation in Quantum Mechanics [62.997667081978825]
In quantum mechanics, the energy per degree of freedom is not equally distributed.
We show that in the high-temperature regime, the classical result is recovered.
arXiv Detail & Related papers (2022-05-24T20:51:03Z) - Quantum dynamics corresponding to chaotic BKL scenario [62.997667081978825]
Quantization smears the gravitational singularity avoiding its localization in the configuration space.
Results suggest that the generic singularity of general relativity can be avoided at quantum level.
arXiv Detail & Related papers (2022-04-24T13:32:45Z) - Generalized probability and current densities: A Field theory [0.0]
We introduce a generalized Lagrangian density for a quantum particle with the generalized momentum operator.
After variation of the Lagrangian, we obtain the corresponding Schr"odinger equation.
The extended probability and particle current densities are found which satisfy the continuity equation.
arXiv Detail & Related papers (2022-03-04T06:14:45Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z) - Lagrangian description of Heisenberg and Landau-von Neumann equations of
motion [55.41644538483948]
An explicit Lagrangian description is given for the Heisenberg equation on the algebra of operators of a quantum system, and for the Landau-von Neumann equation on the manifold of quantum states which are isospectral with respect to a fixed reference quantum state.
arXiv Detail & Related papers (2020-05-04T22:46:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.