Closed-form solutions for the Salpeter equation
- URL: http://arxiv.org/abs/2407.00096v1
- Date: Wed, 26 Jun 2024 15:52:39 GMT
- Title: Closed-form solutions for the Salpeter equation
- Authors: Fernando Alonso-Marroquin, Yaoyue Tang, Fatemeh Gharari, M. N. Najafi,
- Abstract summary: We study the propagator of the $1+1$ dimensional Salpeter Hamiltonian, describing a relativistic quantum particle with no spin.
The analytical extension of the Hamiltonian in the complex plane allows us to formulate the equivalent problem, namely the B"aumer equation.
This B"aumera corresponds to the Green function of a relativistic diffusion process that interpolates between Cauchy for small times and Gaussian diffusion for large times.
- Score: 41.94295877935867
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose integral representations and analytical solutions for the propagator of the $1+1$ dimensional Salpeter Hamiltonian, describing a relativistic quantum particle with no spin. We explore the exact Green function and an exact solution for a given initial condition, and also find the asymptotic solutions in some limiting cases. The analytical extension of the Hamiltonian in the complex plane allows us to formulate the equivalent stochastic problem, namely the B\"aumer equation. This equation describes \textit{relativistic} stochastic processes with time-changing anomalous diffusion. This B\"aumer propagator corresponds to the Green function of a relativistic diffusion process that interpolates between Cauchy distributions for small times and Gaussian diffusion for large times, providing a framework for stochastic processes where anomalous diffusion is time-dependent.
Related papers
- Exact dynamics of quantum dissipative $XX$ models: Wannier-Stark localization in the fragmented operator space [49.1574468325115]
We find an exceptional point at a critical dissipation strength that separates oscillating and non-oscillating decay.
We also describe a different type of dissipation that leads to a single decay mode in the whole operator subspace.
arXiv Detail & Related papers (2024-05-27T16:11:39Z) - Radiative transport in a periodic structure with band crossings [52.24960876753079]
We derive the semi-classical model for the Schr"odinger equation in arbitrary spatial dimensions.
We consider both deterministic and random scenarios.
As a specific application, we deduce the effective dynamics of a wave packet in graphene with randomness.
arXiv Detail & Related papers (2024-02-09T23:34:32Z) - Noise-Free Sampling Algorithms via Regularized Wasserstein Proximals [3.4240632942024685]
We consider the problem of sampling from a distribution governed by a potential function.
This work proposes an explicit score based MCMC method that is deterministic, resulting in a deterministic evolution for particles.
arXiv Detail & Related papers (2023-08-28T23:51:33Z) - On the path integral simulation of space-time fractional Schroedinger
equation with time independent potentials [0.0]
A Feynman-Kac path integral method has been proposed for solving the Cauchy problems associated with the space-time fractional Schroedinger equations.
We have been able to simulate the space-time fractional diffusion process with comparable simplicity and convergence rate as in the case of a standard diffusion.
arXiv Detail & Related papers (2023-06-25T20:14:40Z) - A mathematical analysis of the adiabatic Dyson equation from
time-dependent density functional theory [0.0]
We analyze the Dyson equation for the density-density response function (DDRF) that plays a central role in linear response time-dependent density functional theory.
We derive a representation formula for the solution of the Dyson equation in terms of an operator version of the Casida matrix.
We show that for adiabatic approximations satisfying a suitable compactness condition, the maximal domains of meromorphic continuation of the initial density-density response function and the solution of the Dyson equation are the same.
arXiv Detail & Related papers (2023-05-15T15:46:33Z) - The Schr\"odinger equation for the Rosen-Morse type potential revisited
with applications [0.0]
We rigorously solve the time-independent Schr"odinger equation for the Rosen-Morse type potential.
The resolution of this problem is used to show that the kinks of the non-linear Klein-Gordon equation with $varphi2p+2$ type potentials are stable.
arXiv Detail & Related papers (2023-04-12T18:43:39Z) - A blob method method for inhomogeneous diffusion with applications to
multi-agent control and sampling [0.6562256987706128]
We develop a deterministic particle method for the weighted porous medium equation (WPME) and prove its convergence on bounded time intervals.
Our method has natural applications to multi-agent coverage algorithms and sampling probability measures.
arXiv Detail & Related papers (2022-02-25T19:49:05Z) - Determination of the critical exponents in dissipative phase
transitions: Coherent anomaly approach [51.819912248960804]
We propose a generalization of the coherent anomaly method to extract the critical exponents of a phase transition occurring in the steady-state of an open quantum many-body system.
arXiv Detail & Related papers (2021-03-12T13:16:18Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z) - Variational Transport: A Convergent Particle-BasedAlgorithm for Distributional Optimization [106.70006655990176]
A distributional optimization problem arises widely in machine learning and statistics.
We propose a novel particle-based algorithm, dubbed as variational transport, which approximately performs Wasserstein gradient descent.
We prove that when the objective function satisfies a functional version of the Polyak-Lojasiewicz (PL) (Polyak, 1963) and smoothness conditions, variational transport converges linearly.
arXiv Detail & Related papers (2020-12-21T18:33:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.