Diffusion Denoising for Low-Dose-CT Model
- URL: http://arxiv.org/abs/2301.11482v2
- Date: Tue, 31 Jan 2023 01:21:25 GMT
- Title: Diffusion Denoising for Low-Dose-CT Model
- Authors: Runyi Li
- Abstract summary: We introduce Denoising Diffusion LDCT Model, dubbed as DDLM, generating noise-free CT image using conditioned sampling.
Experiments on LDCT images have shown comparable performance of DDLM using less inference time, surpassing other state-of-the-art methods.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Low-dose Computed Tomography (LDCT) reconstruction is an important task in
medical image analysis. Recent years have seen many deep learning based
methods, proved to be effective in this area. However, these methods mostly
follow a supervised architecture, which needs paired CT image of full dose and
quarter dose, and the solution is highly dependent on specific measurements. In
this work, we introduce Denoising Diffusion LDCT Model, dubbed as DDLM,
generating noise-free CT image using conditioned sampling. DDLM uses pretrained
model, and need no training nor tuning process, thus our proposal is in
unsupervised manner. Experiments on LDCT images have shown comparable
performance of DDLM using less inference time, surpassing other
state-of-the-art methods, proving both accurate and efficient. Implementation
code will be set to public soon.
Related papers
- WIA-LD2ND: Wavelet-based Image Alignment for Self-supervised Low-Dose CT Denoising [74.14134385961775]
We introduce a novel self-supervised CT image denoising method called WIA-LD2ND, only using NDCT data.
WIA-LD2ND comprises two modules: Wavelet-based Image Alignment (WIA) and Frequency-Aware Multi-scale Loss (FAM)
arXiv Detail & Related papers (2024-03-18T11:20:11Z) - Rotational Augmented Noise2Inverse for Low-dose Computed Tomography
Reconstruction [83.73429628413773]
Supervised deep learning methods have shown the ability to remove noise in images but require accurate ground truth.
We propose a novel self-supervised framework for LDCT, in which ground truth is not required for training the convolutional neural network (CNN)
Numerical and experimental results show that the reconstruction accuracy of N2I with sparse views is degrading while the proposed rotational augmented Noise2Inverse (RAN2I) method keeps better image quality over a different range of sampling angles.
arXiv Detail & Related papers (2023-12-19T22:40:51Z) - Self-supervised Noise2noise Method Utilizing Corrupted Images with a
Modular Network for LDCT Denoising [9.794579903055668]
Deep learning is a promising technique for low-dose computed tomography (LDCT) image denoising.
Traditional deep learning methods require paired noisy and clean datasets.
This paper proposes a new method for performing LDCT image denoising with only LDCT data.
arXiv Detail & Related papers (2023-08-13T11:26:56Z) - BOOT: Data-free Distillation of Denoising Diffusion Models with
Bootstrapping [64.54271680071373]
Diffusion models have demonstrated excellent potential for generating diverse images.
Knowledge distillation has been recently proposed as a remedy that can reduce the number of inference steps to one or a few.
We present a novel technique called BOOT, that overcomes limitations with an efficient data-free distillation algorithm.
arXiv Detail & Related papers (2023-06-08T20:30:55Z) - Diffusion Probabilistic Priors for Zero-Shot Low-Dose CT Image Denoising [10.854795474105366]
Denoising low-dose computed tomography (CT) images is a critical task in medical image computing.
Existing unsupervised deep learning-based methods often require training with a large number of low-dose CT images.
We propose a novel unsupervised method that only utilizes normal-dose CT images during training, enabling zero-shot denoising of low-dose CT images.
arXiv Detail & Related papers (2023-05-25T09:38:52Z) - QS-ADN: Quasi-Supervised Artifact Disentanglement Network for Low-Dose
CT Image Denoising by Local Similarity Among Unpaired Data [10.745277107045949]
This paper introduces a new learning mode, called quasi-supervised learning, to empower the ADN for LDCT image denoising.
The proposed method is different from (but compatible with) supervised and semi-supervised learning modes and can be easily implemented by modifying existing networks.
The experimental results show that the method is competitive with state-of-the-art methods in terms of noise suppression and contextual fidelity.
arXiv Detail & Related papers (2023-02-08T07:19:13Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
Pathological brain lesions exhibit diverse appearance in brain images.
Unsupervised anomaly detection approaches have been proposed using only normal data for training.
We show that optimization of the spatial resolution and magnitude of the noise improves the performance of different model training regimes.
arXiv Detail & Related papers (2023-01-19T21:39:38Z) - Self-supervised Physics-based Denoising for Computed Tomography [2.2758845733923687]
Computed Tomography (CT) imposes risk on the patients due to its inherent X-ray radiation.
Lowering the radiation dose reduces the health risks but leads to noisier measurements, which decreases the tissue contrast and causes artifacts in CT images.
Modern deep learning noise suppression methods alleviate the challenge but require low-noise-high-noise CT image pairs for training.
We introduce a new self-supervised approach for CT denoising Noise2NoiseTD-ANM that can be trained without the high-dose CT projection ground truth images.
arXiv Detail & Related papers (2022-11-01T20:58:50Z) - No-reference denoising of low-dose CT projections [2.7716102039510564]
Low-dose computed tomography (LDCT) became a clear trend in radiology with an aspiration to refrain from delivering excessive X-ray radiation to the patients.
The reduction of the radiation dose decreases the risks to the patients but raises the noise level, affecting the quality of the images and their ultimate diagnostic value.
One mitigation option is to consider pairs of low-dose and high-dose CT projections to train a denoising model using deep learning algorithms; however, such pairs are rarely available in practice.
In this paper, we present a new self-supervised method for CT denoising. Unlike existing self-supervised
arXiv Detail & Related papers (2021-02-03T13:51:33Z) - A Multi-Stage Attentive Transfer Learning Framework for Improving
COVID-19 Diagnosis [49.3704402041314]
We propose a multi-stage attentive transfer learning framework for improving COVID-19 diagnosis.
Our proposed framework consists of three stages to train accurate diagnosis models through learning knowledge from multiple source tasks and data of different domains.
Importantly, we propose a novel self-supervised learning method to learn multi-scale representations for lung CT images.
arXiv Detail & Related papers (2021-01-14T01:39:19Z) - Multifold Acceleration of Diffusion MRI via Slice-Interleaved Diffusion
Encoding (SIDE) [50.65891535040752]
We propose a diffusion encoding scheme, called Slice-Interleaved Diffusion.
SIDE, that interleaves each diffusion-weighted (DW) image volume with slices encoded with different diffusion gradients.
We also present a method based on deep learning for effective reconstruction of DW images from the highly slice-undersampled data.
arXiv Detail & Related papers (2020-02-25T14:48:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.