Federated mmWave Beam Selection Utilizing LIDAR Data
- URL: http://arxiv.org/abs/2102.02802v1
- Date: Thu, 4 Feb 2021 18:49:20 GMT
- Title: Federated mmWave Beam Selection Utilizing LIDAR Data
- Authors: Mahdi Boloursaz Mashhadi, Mikolaj Jankowski, Tze-Yang Tung, Szymon
Kobus, and Deniz Gunduz
- Abstract summary: We propose distributed LIDAR aided beam selection for V2I mmWave communication systems utilizing federated training.
In the proposed scheme, connected vehicles collaborate to train a shared neural network (NN) on their locally available LIDAR data during normal operation of the system.
We also propose an alternative reduced-complexity convolutional NN (CNN) architecture and LIDAR preprocessing, which significantly outperforms previous works in terms of both the performance and the complexity.
- Score: 3.7352534957395522
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Efficient link configuration in millimeter wave (mmWave) communication
systems is a crucial yet challenging task due to the overhead imposed by beam
selection on the network performance. For vehicle-to-infrastructure (V2I)
networks, side information from LIDAR sensors mounted on the vehicles has been
leveraged to reduce the beam search overhead. In this letter, we propose
distributed LIDAR aided beam selection for V2I mmWave communication systems
utilizing federated training. In the proposed scheme, connected vehicles
collaborate to train a shared neural network (NN) on their locally available
LIDAR data during normal operation of the system. We also propose an
alternative reduced-complexity convolutional NN (CNN) architecture and LIDAR
preprocessing, which significantly outperforms previous works in terms of both
the performance and the complexity.
Related papers
- Neuromorphic Wireless Split Computing with Multi-Level Spikes [69.73249913506042]
In neuromorphic computing, spiking neural networks (SNNs) perform inference tasks, offering significant efficiency gains for workloads involving sequential data.
Recent advances in hardware and software have demonstrated that embedding a few bits of payload in each spike exchanged between the spiking neurons can further enhance inference accuracy.
This paper investigates a wireless neuromorphic split computing architecture employing multi-level SNNs.
arXiv Detail & Related papers (2024-11-07T14:08:35Z) - Energy-Efficient On-Board Radio Resource Management for Satellite
Communications via Neuromorphic Computing [59.40731173370976]
We investigate the application of energy-efficient brain-inspired machine learning models for on-board radio resource management.
For relevant workloads, spiking neural networks (SNNs) implemented on Loihi 2 yield higher accuracy, while reducing power consumption by more than 100$times$ as compared to the CNN-based reference platform.
arXiv Detail & Related papers (2023-08-22T03:13:57Z) - Deep Learning and Image Super-Resolution-Guided Beam and Power
Allocation for mmWave Networks [80.37827344656048]
We develop a deep learning (DL)-guided hybrid beam and power allocation approach for millimeter-wave (mmWave) networks.
We exploit the synergy of supervised learning and super-resolution technology to enable low-overhead beam- and power allocation.
arXiv Detail & Related papers (2023-05-08T05:40:54Z) - SlimFL: Federated Learning with Superposition Coding over Slimmable
Neural Networks [56.68149211499535]
Federated learning (FL) is a key enabler for efficient communication and computing leveraging devices' distributed computing capabilities.
This paper proposes a novel learning framework by integrating FL and width-adjustable slimmable neural networks (SNNs)
We propose a communication and energy-efficient SNN-based FL (named SlimFL) that jointly utilizes superposition coding (SC) for global model aggregation and superposition training (ST) for updating local models.
arXiv Detail & Related papers (2022-03-26T15:06:13Z) - Data-Driven Deep Learning Based Hybrid Beamforming for Aerial Massive
MIMO-OFDM Systems with Implicit CSI [29.11998008894847]
We propose a data-driven deep learning-based unified hybrid beamforming framework for time division duplex and frequency division duplex systems.
For TDD systems, the proposed DL-based approach jointly models the uplink pilot combining and downlink hybrid beamforming modules as an E2E neural network.
While for FDD systems, we jointly model the downlink pilot transmission, uplink CSI feedback, and downlink hybrid beamforming modules as an E2E neural network.
arXiv Detail & Related papers (2022-01-18T07:21:00Z) - Deep Learning on Multimodal Sensor Data at the Wireless Edge for
Vehicular Network [8.458980329342799]
We propose a novel expediting beam selection by leveraging multimodal data collected from sensors like LiDAR, camera images, and GPS.
We propose individual and distributed fusion-based deep learning (F-DL) architectures that can execute locally as well as at a mobile edge computing center.
Results from extensive evaluations conducted on publicly available synthetic and home-grown real-world datasets reveal 95% and 96% improvement in beam selection speed over classical RF-only beam sweeping.
arXiv Detail & Related papers (2022-01-12T21:55:34Z) - A Novel Look at LIDAR-aided Data-driven mmWave Beam Selection [24.711393214172148]
We propose a lightweight neural network (NN) architecture along with the corresponding LIDAR preprocessing.
Our NN-based beam selection scheme can achieve 79.9% throughput without any beam search overhead and 95% by searching among as few as 6 beams.
arXiv Detail & Related papers (2021-04-29T18:07:31Z) - Self-Organizing mmWave MIMO Cell-Free Networks With Hybrid Beamforming:
A Hierarchical DRL-Based Design [30.70798412145064]
In a cell-free wireless network, distributed access points (APs) jointly serve all user equipments (UEs) within the their coverage area by using the same time/frequency resources.
We propose several network partitioning based on deep learning (DRL)
To design interference between different cell-freeworks, we develop a novel hybrid beamst-digital beam model.
arXiv Detail & Related papers (2021-03-17T03:31:52Z) - Terahertz-Band Joint Ultra-Massive MIMO Radar-Communications:
Model-Based and Model-Free Hybrid Beamforming [45.257328085051974]
Wireless communications and sensing at terahertz (THz) band are investigated as promising short-range technologies.
Ultra-massive multiple-input multiple-output (UM-MIMO) antenna systems have been proposed for THz communications to compensate propagation losses.
We develop THz hybrid beamformers based on both model-based and model-free techniques for a new group-of-subarrays (GoSA) UM-MIMO structure.
arXiv Detail & Related papers (2021-02-27T21:28:34Z) - Deep Learning-based Compressive Beam Alignment in mmWave Vehicular
Systems [75.77033270838926]
vehicular channels exhibit structure that can be exploited for beam alignment with fewer channel measurements.
We propose a deep learning-based technique to design a structured compressed sensing (CS) matrix.
arXiv Detail & Related papers (2021-02-27T04:38:12Z) - Distributional Reinforcement Learning for mmWave Communications with
Intelligent Reflectors on a UAV [119.97450366894718]
A novel communication framework that uses an unmanned aerial vehicle (UAV)-carried intelligent reflector (IR) is proposed.
In order to maximize the downlink sum-rate, the optimal precoding matrix (at the base station) and reflection coefficient (at the IR) are jointly derived.
arXiv Detail & Related papers (2020-11-03T16:50:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.