Self-Organizing mmWave MIMO Cell-Free Networks With Hybrid Beamforming:
A Hierarchical DRL-Based Design
- URL: http://arxiv.org/abs/2103.11823v1
- Date: Wed, 17 Mar 2021 03:31:52 GMT
- Title: Self-Organizing mmWave MIMO Cell-Free Networks With Hybrid Beamforming:
A Hierarchical DRL-Based Design
- Authors: Yasser Al-Eryani and Ekram Hossain
- Abstract summary: In a cell-free wireless network, distributed access points (APs) jointly serve all user equipments (UEs) within the their coverage area by using the same time/frequency resources.
We propose several network partitioning based on deep learning (DRL)
To design interference between different cell-freeworks, we develop a novel hybrid beamst-digital beam model.
- Score: 30.70798412145064
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: In a cell-free wireless network, distributed access points (APs) jointly
serve all user equipments (UEs) within the their coverage area by using the
same time/frequency resources. In this paper, we develop a novel downlink
cell-free multiple-input multiple-output (MIMO) millimeter wave (mmWave)
network architecture that enables all APs and UEs to dynamically self-partition
into a set of independent cell-free subnetworks in a time-slot basis. For this,
we propose several network partitioning algorithms based on deep reinforcement
learning (DRL). Furthermore, to mitigate interference between different
cell-free subnetworks, we develop a novel hybrid analog beamsteering-digital
beamforming model that zero-forces interference among cell-free subnetworks and
at the same time maximizes the instantaneous sum-rate of all UEs within each
subnetwork. Specifically, the hybrid beamforming model is implemented by using
a novel mixed DRL-convex optimization method in which analog beamsteering
between APs and UEs is conducted based on DRL while digital beamforming is
modeled and solved as a convex optimization problem. The DRL models for network
clustering and hybrid beamsteering are combined into a single hierarchical DRL
design that enables exchange of DRL agents' experiences during both network
training and operation. We also benchmark the performance of DRL models for
clustering and beamsteering in terms of network performance, convergence rate,
and computational complexity.
Related papers
- Multi-Flow Transmission in Wireless Interference Networks: A Convergent
Graph Learning Approach [9.852567834643292]
We introduce a novel algorithm called Dual-stage Interference-Aware Multi-flow Optimization of Network Data-signals (DIAMOND)
A centralized stage computes the multi-flow transmission strategy using a novel design of graph neural network (GNN) reinforcement learning (RL) routing agent.
Then, a distributed stage improves the performance based on a novel design of distributed learning updates.
arXiv Detail & Related papers (2023-03-27T18:49:47Z) - Predictive GAN-powered Multi-Objective Optimization for Hybrid Federated
Split Learning [56.125720497163684]
We propose a hybrid federated split learning framework in wireless networks.
We design a parallel computing scheme for model splitting without label sharing, and theoretically analyze the influence of the delayed gradient caused by the scheme on the convergence speed.
arXiv Detail & Related papers (2022-09-02T10:29:56Z) - Parallel Successive Learning for Dynamic Distributed Model Training over
Heterogeneous Wireless Networks [50.68446003616802]
Federated learning (FedL) has emerged as a popular technique for distributing model training over a set of wireless devices.
We develop parallel successive learning (PSL), which expands the FedL architecture along three dimensions.
Our analysis sheds light on the notion of cold vs. warmed up models, and model inertia in distributed machine learning.
arXiv Detail & Related papers (2022-02-07T05:11:01Z) - Data-Driven Deep Learning Based Hybrid Beamforming for Aerial Massive
MIMO-OFDM Systems with Implicit CSI [29.11998008894847]
We propose a data-driven deep learning-based unified hybrid beamforming framework for time division duplex and frequency division duplex systems.
For TDD systems, the proposed DL-based approach jointly models the uplink pilot combining and downlink hybrid beamforming modules as an E2E neural network.
While for FDD systems, we jointly model the downlink pilot transmission, uplink CSI feedback, and downlink hybrid beamforming modules as an E2E neural network.
arXiv Detail & Related papers (2022-01-18T07:21:00Z) - Semantic-Aware Collaborative Deep Reinforcement Learning Over Wireless
Cellular Networks [82.02891936174221]
Collaborative deep reinforcement learning (CDRL) algorithms in which multiple agents can coordinate over a wireless network is a promising approach.
In this paper, a novel semantic-aware CDRL method is proposed to enable a group of untrained agents with semantically-linked DRL tasks to collaborate efficiently across a resource-constrained wireless cellular network.
arXiv Detail & Related papers (2021-11-23T18:24:47Z) - Unit-Modulus Wireless Federated Learning Via Penalty Alternating
Minimization [64.76619508293966]
Wireless federated learning (FL) is an emerging machine learning paradigm that trains a global parametric model from distributed datasets via wireless communications.
This paper proposes a wireless FL framework, which uploads local model parameters and computes global model parameters via wireless communications.
arXiv Detail & Related papers (2021-08-31T08:19:54Z) - Limited-Fronthaul Cell-Free Hybrid Beamforming with Distributed Deep
Neural Network [0.0]
Near-optimal solutions require a large amount of signaling exchange between access points (APs) and the network controller (NC)
We propose two unsupervised deep neural networks (DNN) architectures, fully and partially distributed, that can perform coordinated hybrid beamforming with zero or limited communication overhead between APs and NC.
arXiv Detail & Related papers (2021-06-30T16:42:32Z) - Learning Autonomy in Management of Wireless Random Networks [102.02142856863563]
This paper presents a machine learning strategy that tackles a distributed optimization task in a wireless network with an arbitrary number of randomly interconnected nodes.
We develop a flexible deep neural network formalism termed distributed message-passing neural network (DMPNN) with forward and backward computations independent of the network topology.
arXiv Detail & Related papers (2021-06-15T09:03:28Z) - Federated Dropout Learning for Hybrid Beamforming With Spatial Path
Index Modulation In Multi-User mmWave-MIMO Systems [19.10321102094638]
We introduce model-based and model-free frameworks for beamformer design in SPIM-MIMO systems.
The proposed framework exhibits higher spectral efficiency than the state-of-the-art SPIM-MIMO methods and mmWave-MIMO.
arXiv Detail & Related papers (2021-02-15T10:49:26Z) - Multiple Access in Dynamic Cell-Free Networks: Outage Performance and
Deep Reinforcement Learning-Based Design [24.632250413917816]
In future cell-free (or cell-less) wireless networks, a large number of devices in a geographical area will be served simultaneously by a large number of distributed access points (APs)
We propose a novel dynamic cell-free network architecture to reduce the complexity of joint processing of users' signals in presence of a large number of devices and APs.
In our system setting, the proposed DDPG-DDQN scheme is found to achieve around $78%$ of the rate achievable through an exhaustive search-based design.
arXiv Detail & Related papers (2020-01-29T03:00:22Z) - Model Fusion via Optimal Transport [64.13185244219353]
We present a layer-wise model fusion algorithm for neural networks.
We show that this can successfully yield "one-shot" knowledge transfer between neural networks trained on heterogeneous non-i.i.d. data.
arXiv Detail & Related papers (2019-10-12T22:07:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.