Escaping Saddle Points for Nonsmooth Weakly Convex Functions via
Perturbed Proximal Algorithms
- URL: http://arxiv.org/abs/2102.02837v1
- Date: Thu, 4 Feb 2021 19:17:13 GMT
- Title: Escaping Saddle Points for Nonsmooth Weakly Convex Functions via
Perturbed Proximal Algorithms
- Authors: Minhui Huang
- Abstract summary: Main results are based on a novel characterization of $epsilon$-approximate local minimum for nonsmooth functions.
We show that under standard assumptions, the perturbed proximal point, perturbed proximal gradient and perturbed proximal linear algorithms find $epsilon$-approximate local minimum for nonsmooth weakly convex functions.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose perturbed proximal algorithms that can provably escape strict
saddles for nonsmooth weakly convex functions. The main results are based on a
novel characterization of $\epsilon$-approximate local minimum for nonsmooth
functions, and recent developments on perturbed gradient methods for escaping
saddle points for smooth problems. Specifically, we show that under standard
assumptions, the perturbed proximal point, perturbed proximal gradient and
perturbed proximal linear algorithms find $\epsilon$-approximate local minimum
for nonsmooth weakly convex functions in $O(\epsilon^{-2}\log(d)^4)$
iterations, where $d$ is the dimension of the problem.
Related papers
- Stochastic Zeroth-Order Optimization under Strongly Convexity and Lipschitz Hessian: Minimax Sample Complexity [59.75300530380427]
We consider the problem of optimizing second-order smooth and strongly convex functions where the algorithm is only accessible to noisy evaluations of the objective function it queries.
We provide the first tight characterization for the rate of the minimax simple regret by developing matching upper and lower bounds.
arXiv Detail & Related papers (2024-06-28T02:56:22Z) - Single-Loop Stochastic Algorithms for Difference of Max-Structured Weakly Convex Functions [41.43895948769255]
We show a class of non-smooth non-asymptotic fairness problems in the form of $min_x[yin Yphi(x, y) - max_zin Zpsix(x, z)]$.
We propose an envelope approximate gradient SMAG, the first method for solving these problems, provide a state-of-the-art non-asymptotic convergence rate.
arXiv Detail & Related papers (2024-05-28T20:52:46Z) - Gradient-free optimization of highly smooth functions: improved analysis
and a new algorithm [87.22224691317766]
This work studies problems with zero-order noisy oracle information under the assumption that the objective function is highly smooth.
We consider two kinds of zero-order projected gradient descent algorithms.
arXiv Detail & Related papers (2023-06-03T17:05:13Z) - On the Complexity of Finding Small Subgradients in Nonsmooth
Optimization [31.714928102950584]
We show that no dimension-free rate can be achieved by a deterministic algorithm.
We show how the convergence rate of finding $(delta,epsilon)$-stationary points can be improved in case the function is convex.
arXiv Detail & Related papers (2022-09-21T13:30:00Z) - Efficiently Escaping Saddle Points in Bilevel Optimization [48.925688192913]
Bilevel optimization is one of the problems in machine learning.
Recent developments in bilevel optimization converge on the first fundamental nonaptature multi-step analysis.
arXiv Detail & Related papers (2022-02-08T07:10:06Z) - A first-order primal-dual method with adaptivity to local smoothness [64.62056765216386]
We consider the problem of finding a saddle point for the convex-concave objective $min_x max_y f(x) + langle Ax, yrangle - g*(y)$, where $f$ is a convex function with locally Lipschitz gradient and $g$ is convex and possibly non-smooth.
We propose an adaptive version of the Condat-Vu algorithm, which alternates between primal gradient steps and dual steps.
arXiv Detail & Related papers (2021-10-28T14:19:30Z) - Saddle Point Optimization with Approximate Minimization Oracle [8.680676599607125]
A major approach to saddle point optimization $min_xmax_y f(x, y)$ is a gradient based approach as is popularized by generative adversarial networks (GANs)
In contrast, we analyze an alternative approach relying only on an oracle that solves a minimization problem approximately.
Our approach locates approximate solutions $x'$ and $y'$ to $min_x'f(x', y)$ at a given point $(x, y)$ and updates $(x, y)$ toward these approximate solutions $(x', y'
arXiv Detail & Related papers (2021-03-29T23:03:24Z) - Exploiting Higher Order Smoothness in Derivative-free Optimization and
Continuous Bandits [99.70167985955352]
We study the problem of zero-order optimization of a strongly convex function.
We consider a randomized approximation of the projected gradient descent algorithm.
Our results imply that the zero-order algorithm is nearly optimal in terms of sample complexity and the problem parameters.
arXiv Detail & Related papers (2020-06-14T10:42:23Z) - Complexity of Finding Stationary Points of Nonsmooth Nonconvex Functions [84.49087114959872]
We provide the first non-asymptotic analysis for finding stationary points of nonsmooth, nonsmooth functions.
In particular, we study Hadamard semi-differentiable functions, perhaps the largest class of nonsmooth functions.
arXiv Detail & Related papers (2020-02-10T23:23:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.