A Variational Information Bottleneck Approach to Multi-Omics Data
Integration
- URL: http://arxiv.org/abs/2102.03014v1
- Date: Fri, 5 Feb 2021 06:05:39 GMT
- Title: A Variational Information Bottleneck Approach to Multi-Omics Data
Integration
- Authors: Changhee Lee and Mihaela van der Schaar
- Abstract summary: We propose a deep variational information bottleneck (IB) approach for incomplete multi-view observations.
Our method applies the IB framework on marginal and joint representations of the observed views to focus on intra-view and inter-view interactions that are relevant for the target.
Experiments on real-world datasets show that our method consistently achieves gain from data integration and outperforms state-of-the-art benchmarks.
- Score: 98.6475134630792
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Integration of data from multiple omics techniques is becoming increasingly
important in biomedical research. Due to non-uniformity and technical
limitations in omics platforms, such integrative analyses on multiple omics,
which we refer to as views, involve learning from incomplete observations with
various view-missing patterns. This is challenging because i) complex
interactions within and across observed views need to be properly addressed for
optimal predictive power and ii) observations with various view-missing
patterns need to be flexibly integrated. To address such challenges, we propose
a deep variational information bottleneck (IB) approach for incomplete
multi-view observations. Our method applies the IB framework on marginal and
joint representations of the observed views to focus on intra-view and
inter-view interactions that are relevant for the target. Most importantly, by
modeling the joint representations as a product of marginal representations, we
can efficiently learn from observed views with various view-missing patterns.
Experiments on real-world datasets show that our method consistently achieves
gain from data integration and outperforms state-of-the-art benchmarks.
Related papers
- Partial Multi-View Clustering via Meta-Learning and Contrastive Feature Alignment [13.511433241138702]
Partial multi-view clustering (PVC) presents significant challenges practical research problem for data analysis in real-world applications.
Existing clustering methods struggle to handle incomplete views effectively, leading to suboptimal clustering performance.
We propose a novel dual optimization framework based on contrastive learning, which aims to maximize the consistency of latent features in incomplete multi-view data.
arXiv Detail & Related papers (2024-11-14T19:16:01Z) - Cross-view Graph Contrastive Representation Learning on Partially
Aligned Multi-view Data [52.491074276133325]
Multi-view representation learning has developed rapidly over the past decades and has been applied in many fields.
We propose a new cross-view graph contrastive learning framework, which integrates multi-view information to align data and learn latent representations.
Experiments conducted on several real datasets demonstrate the effectiveness of the proposed method on the clustering and classification tasks.
arXiv Detail & Related papers (2022-11-08T09:19:32Z) - Latent Heterogeneous Graph Network for Incomplete Multi-View Learning [57.49776938934186]
We propose a novel Latent Heterogeneous Graph Network (LHGN) for incomplete multi-view learning.
By learning a unified latent representation, a trade-off between consistency and complementarity among different views is implicitly realized.
To avoid any inconsistencies between training and test phase, a transductive learning technique is applied based on graph learning for classification tasks.
arXiv Detail & Related papers (2022-08-29T15:14:21Z) - Variational Distillation for Multi-View Learning [104.17551354374821]
We design several variational information bottlenecks to exploit two key characteristics for multi-view representation learning.
Under rigorously theoretical guarantee, our approach enables IB to grasp the intrinsic correlation between observations and semantic labels.
arXiv Detail & Related papers (2022-06-20T03:09:46Z) - MoReL: Multi-omics Relational Learning [26.484803417186384]
We propose a novel deep Bayesian generative model to efficiently infer a multi-partite graph encoding molecular interactions across heterogeneous views.
With such an optimal transport regularization in the deep Bayesian generative model, it not only allows incorporating view-specific side information, but also increases the model flexibility with the distribution-based regularization.
arXiv Detail & Related papers (2022-03-15T02:50:07Z) - Learning Multimodal VAEs through Mutual Supervision [72.77685889312889]
MEME combines information between modalities implicitly through mutual supervision.
We demonstrate that MEME outperforms baselines on standard metrics across both partial and complete observation schemes.
arXiv Detail & Related papers (2021-06-23T17:54:35Z) - Collaborative Attention Mechanism for Multi-View Action Recognition [75.33062629093054]
We propose a collaborative attention mechanism (CAM) for solving the multi-view action recognition problem.
The proposed CAM detects the attention differences among multi-view, and adaptively integrates frame-level information to benefit each other.
Experiments on four action datasets illustrate the proposed CAM achieves better results for each view and also boosts multi-view performance.
arXiv Detail & Related papers (2020-09-14T17:33:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.