Incomplete Multi-view Clustering via Diffusion Contrastive Generation
- URL: http://arxiv.org/abs/2503.09185v1
- Date: Wed, 12 Mar 2025 09:27:25 GMT
- Title: Incomplete Multi-view Clustering via Diffusion Contrastive Generation
- Authors: Yuanyang Zhang, Yijie Lin, Weiqing Yan, Li Yao, Xinhang Wan, Guangyuan Li, Chao Zhang, Guanzhou Ke, Jie Xu,
- Abstract summary: We propose a novel IMVC method called Diffusion Contrastive Generation (DCG)<n>DCG learns the distribution characteristics to enhance clustering by applying forward diffusion and reverse denoising processes to intra-view data.<n>It integrates instance-level and category-level interactive learning to exploit the consistent and complementary information available in multi-view data.
- Score: 10.303281347345955
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Incomplete multi-view clustering (IMVC) has garnered increasing attention in recent years due to the common issue of missing data in multi-view datasets. The primary approach to address this challenge involves recovering the missing views before applying conventional multi-view clustering methods. Although imputation-based IMVC methods have achieved significant improvements, they still encounter notable limitations: 1) heavy reliance on paired data for training the data recovery module, which is impractical in real scenarios with high missing data rates; 2) the generated data often lacks diversity and discriminability, resulting in suboptimal clustering results. To address these shortcomings, we propose a novel IMVC method called Diffusion Contrastive Generation (DCG). Motivated by the consistency between the diffusion and clustering processes, DCG learns the distribution characteristics to enhance clustering by applying forward diffusion and reverse denoising processes to intra-view data. By performing contrastive learning on a limited set of paired multi-view samples, DCG can align the generated views with the real views, facilitating accurate recovery of views across arbitrary missing view scenarios. Additionally, DCG integrates instance-level and category-level interactive learning to exploit the consistent and complementary information available in multi-view data, achieving robust and end-to-end clustering. Extensive experiments demonstrate that our method outperforms state-of-the-art approaches.
Related papers
- Deep Incomplete Multi-view Clustering with Distribution Dual-Consistency Recovery Guidance [69.58609684008964]
We propose BURG, a novel method for incomplete multi-view clustering with distriBution dUal-consistency Recovery Guidance.
We treat each sample as a distinct category and perform cross-view distribution transfer to predict the distribution space of missing views.
To compensate for the lack of reliable category information, we design a dual-consistency guided recovery strategy that includes intra-view alignment guided by neighbor-aware consistency and cross-view alignment guided by prototypical consistency.
arXiv Detail & Related papers (2025-03-14T02:27:45Z) - Balanced Multi-view Clustering [56.17836963920012]
Multi-view clustering (MvC) aims to integrate information from different views to enhance the capability of the model in capturing the underlying data structures.<n>The widely used joint training paradigm in MvC is potentially not fully leverage the multi-view information.<n>We propose a novel balanced multi-view clustering (BMvC) method, which introduces a view-specific contrastive regularization (VCR) to modulate the optimization of each view.
arXiv Detail & Related papers (2025-01-05T14:42:47Z) - Partial Multi-View Clustering via Meta-Learning and Contrastive Feature Alignment [13.511433241138702]
Partial multi-view clustering (PVC) presents significant challenges practical research problem for data analysis in real-world applications.
Existing clustering methods struggle to handle incomplete views effectively, leading to suboptimal clustering performance.
We propose a novel dual optimization framework based on contrastive learning, which aims to maximize the consistency of latent features in incomplete multi-view data.
arXiv Detail & Related papers (2024-11-14T19:16:01Z) - CDIMC-net: Cognitive Deep Incomplete Multi-view Clustering Network [53.72046586512026]
We propose a novel incomplete multi-view clustering network, called Cognitive Deep Incomplete Multi-view Clustering Network (CDIMC-net)
It captures the high-level features and local structure of each view by incorporating the view-specific deep encoders and graph embedding strategy into a framework.
Based on the human cognition, i.e., learning from easy to hard, it introduces a self-paced strategy to select the most confident samples for model training.
arXiv Detail & Related papers (2024-03-28T15:45:03Z) - Hierarchical Mutual Information Analysis: Towards Multi-view Clustering
in The Wild [9.380271109354474]
This work proposes a deep MVC framework where data recovery and alignment are fused in a hierarchically consistent way to maximize the mutual information among different views.
To the best of our knowledge, this could be the first successful attempt to handle the missing and unaligned data problem separately with different learning paradigms.
arXiv Detail & Related papers (2023-10-28T06:43:57Z) - A Novel Approach for Effective Multi-View Clustering with
Information-Theoretic Perspective [24.630259061774836]
This study presents a new approach called Sufficient Multi-View Clustering (SUMVC) that examines the multi-view clustering framework from an information-theoretic standpoint.
Firstly, we develop a simple and reliable multi-view clustering method SCMVC that employs variational analysis to generate consistent information.
Secondly, we propose a sufficient representation lower bound to enhance consistent information and minimise unnecessary information among views.
arXiv Detail & Related papers (2023-09-25T09:41:11Z) - Incomplete Multi-view Clustering via Diffusion Completion [0.0]
We propose diffusion completion to recover the missing views integrated into an incomplete multi-view clustering framework.
Based on the observable views information, the diffusion model is used to recover the missing views.
The proposed method performs well in recovering the missing views while achieving superior clustering performance compared to state-of-the-art methods.
arXiv Detail & Related papers (2023-05-19T07:39:24Z) - Deep Incomplete Multi-view Clustering with Cross-view Partial Sample and
Prototype Alignment [50.82982601256481]
We propose a Cross-view Partial Sample and Prototype Alignment Network (CPSPAN) for Deep Incomplete Multi-view Clustering.
Unlike existing contrastive-based methods, we adopt pair-observed data alignment as 'proxy supervised signals' to guide instance-to-instance correspondence construction.
arXiv Detail & Related papers (2023-03-28T02:31:57Z) - Unified Multi-View Orthonormal Non-Negative Graph Based Clustering
Framework [74.25493157757943]
We formulate a novel clustering model, which exploits the non-negative feature property and incorporates the multi-view information into a unified joint learning framework.
We also explore, for the first time, the multi-model non-negative graph-based approach to clustering data based on deep features.
arXiv Detail & Related papers (2022-11-03T08:18:27Z) - Unsupervised Multi-view Clustering by Squeezing Hybrid Knowledge from
Cross View and Each View [68.88732535086338]
This paper proposes a new multi-view clustering method, low-rank subspace multi-view clustering based on adaptive graph regularization.
Experimental results for five widely used multi-view benchmarks show that our proposed algorithm surpasses other state-of-the-art methods by a clear margin.
arXiv Detail & Related papers (2020-08-23T08:25:06Z) - Generative Partial Multi-View Clustering [133.36721417531734]
We propose a generative partial multi-view clustering model, named as GP-MVC, to address the incomplete multi-view problem.
First, multi-view encoder networks are trained to learn common low-dimensional representations, followed by a clustering layer to capture the consistent cluster structure across multiple views.
Second, view-specific generative adversarial networks are developed to generate the missing data of one view conditioning on the shared representation given by other views.
arXiv Detail & Related papers (2020-03-29T17:48:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.