"I Don't Think So": Disagreement-Based Policy Summaries for Comparing
Agents
- URL: http://arxiv.org/abs/2102.03064v1
- Date: Fri, 5 Feb 2021 09:09:00 GMT
- Title: "I Don't Think So": Disagreement-Based Policy Summaries for Comparing
Agents
- Authors: Yotam Amitai and Ofra Amir
- Abstract summary: We propose a novel method for generating contrastive summaries that highlight the differences between agent's policies.
Our results show that the novel disagreement-based summaries lead to improved user performance compared to summaries generated using HIGHLIGHTS.
- Score: 2.6270468656705765
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: With Artificial Intelligence on the rise, human interaction with autonomous
agents becomes more frequent. Effective human-agent collaboration requires that
the human understands the agent's behavior, as failing to do so may lead to
reduced productiveness, misuse, frustration and even danger. Agent strategy
summarization methods are used to describe the strategy of an agent to its
destined user through demonstration. The summary's purpose is to maximize the
user's understanding of the agent's aptitude by showcasing its behaviour in a
set of world states, chosen by some importance criteria. While shown to be
useful, we show that these methods are limited in supporting the task of
comparing agent behavior, as they independently generate a summary for each
agent. In this paper, we propose a novel method for generating contrastive
summaries that highlight the differences between agent's policies by
identifying and ranking states in which the agents disagree on the best course
of action. We conduct a user study in which participants face an agent
selection task. Our results show that the novel disagreement-based summaries
lead to improved user performance compared to summaries generated using
HIGHLIGHTS, a previous strategy summarization algorithm.
Related papers
- From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
We introduce StepAgent, which utilizes step-wise reward to optimize the agent's reinforcement learning process.
We propose implicit-reward and inverse reinforcement learning techniques to facilitate agent reflection and policy adjustment.
arXiv Detail & Related papers (2024-11-06T10:35:11Z) - Tell Me More! Towards Implicit User Intention Understanding of Language
Model Driven Agents [110.25679611755962]
Current language model-driven agents often lack mechanisms for effective user participation, which is crucial given the vagueness commonly found in user instructions.
We introduce Intention-in-Interaction (IN3), a novel benchmark designed to inspect users' implicit intentions through explicit queries.
We empirically train Mistral-Interact, a powerful model that proactively assesses task vagueness, inquires user intentions, and refines them into actionable goals.
arXiv Detail & Related papers (2024-02-14T14:36:30Z) - AgentCF: Collaborative Learning with Autonomous Language Agents for
Recommender Systems [112.76941157194544]
We propose AgentCF for simulating user-item interactions in recommender systems through agent-based collaborative filtering.
We creatively consider not only users but also items as agents, and develop a collaborative learning approach that optimize both kinds of agents together.
Overall, the optimized agents exhibit diverse interaction behaviors within our framework, including user-item, user-user, item-item, and collective interactions.
arXiv Detail & Related papers (2023-10-13T16:37:14Z) - Deep Multi-Agent Reinforcement Learning for Decentralized Active
Hypothesis Testing [11.639503711252663]
We tackle the multi-agent active hypothesis testing (AHT) problem by introducing a novel algorithm rooted in the framework of deep multi-agent reinforcement learning.
We present a comprehensive set of experimental results that effectively showcase the agents' ability to learn collaborative strategies and enhance performance.
arXiv Detail & Related papers (2023-09-14T01:18:04Z) - Pure Exploration under Mediators' Feedback [63.56002444692792]
Multi-armed bandits are a sequential-decision-making framework, where, at each interaction step, the learner selects an arm and observes a reward.
We consider the scenario in which the learner has access to a set of mediators, each of which selects the arms on the agent's behalf according to a and possibly unknown policy.
We propose a sequential decision-making strategy for discovering the best arm under the assumption that the mediators' policies are known to the learner.
arXiv Detail & Related papers (2023-08-29T18:18:21Z) - Conveying Autonomous Robot Capabilities through Contrasting Behaviour
Summaries [8.413049356622201]
We present an adaptive search method for efficiently generating contrasting behaviour summaries.
Our results indicate that adaptive search can efficiently identify informative contrasting scenarios that enable humans to accurately select the better performing agent.
arXiv Detail & Related papers (2023-04-01T18:20:59Z) - Toward Policy Explanations for Multi-Agent Reinforcement Learning [18.33682005623418]
We present novel methods to generate two types of policy explanations for MARL.
Experimental results on three MARL domains demonstrate the scalability of our methods.
A user study shows that the generated explanations significantly improve user performance and increase subjective ratings on metrics such as user satisfaction.
arXiv Detail & Related papers (2022-04-26T20:07:08Z) - Explaining Reinforcement Learning Policies through Counterfactual
Trajectories [147.7246109100945]
A human developer must validate that an RL agent will perform well at test-time.
Our method conveys how the agent performs under distribution shifts by showing the agent's behavior across a wider trajectory distribution.
In a user study, we demonstrate that our method enables users to score better than baseline methods on one of two agent validation tasks.
arXiv Detail & Related papers (2022-01-29T00:52:37Z) - One-shot Policy Elicitation via Semantic Reward Manipulation [2.668480521943575]
We present Single-shot Policy Explanation for Augmenting Rewards (SPEAR), a novel sequential optimization algorithm.
We show that SPEAR makes substantial improvements over the state-of-the-art in terms of runtime and addressable problem size.
arXiv Detail & Related papers (2021-01-06T04:11:22Z) - Multi-agent Policy Optimization with Approximatively Synchronous
Advantage Estimation [55.96893934962757]
In multi-agent system, polices of different agents need to be evaluated jointly.
In current methods, value functions or advantage functions use counter-factual joint actions which are evaluated asynchronously.
In this work, we propose the approximatively synchronous advantage estimation.
arXiv Detail & Related papers (2020-12-07T07:29:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.