Understanding Individual Agent Importance in Multi-Agent System via Counterfactual Reasoning
- URL: http://arxiv.org/abs/2412.15619v2
- Date: Mon, 23 Dec 2024 01:56:56 GMT
- Title: Understanding Individual Agent Importance in Multi-Agent System via Counterfactual Reasoning
- Authors: Jianming Chen, Yawen Wang, Junjie Wang, Xiaofei Xie, jun Hu, Qing Wang, Fanjiang Xu,
- Abstract summary: We propose EMAI, a novel agent-level explanation approach that evaluates the individual agent's importance.
Inspired by counterfactual reasoning, a larger change in reward caused by the randomized action of agent indicates its higher importance.
EMAI achieves higher fidelity in explanations than baselines and provides more effective guidance in practical applications.
- Score: 20.76991315856237
- License:
- Abstract: Explaining multi-agent systems (MAS) is urgent as these systems become increasingly prevalent in various applications. Previous work has proveided explanations for the actions or states of agents, yet falls short in understanding the black-boxed agent's importance within a MAS and the overall team strategy. To bridge this gap, we propose EMAI, a novel agent-level explanation approach that evaluates the individual agent's importance. Inspired by counterfactual reasoning, a larger change in reward caused by the randomized action of agent indicates its higher importance. We model it as a MARL problem to capture interactions across agents. Utilizing counterfactual reasoning, EMAI learns the masking agents to identify important agents. Specifically, we define the optimization function to minimize the reward difference before and after action randomization and introduce sparsity constraints to encourage the exploration of more action randomization of agents during training. The experimental results in seven multi-agent tasks demonstratee that EMAI achieves higher fidelity in explanations than baselines and provides more effective guidance in practical applications concerning understanding policies, launching attacks, and patching policies.
Related papers
- From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
We introduce StepAgent, which utilizes step-wise reward to optimize the agent's reinforcement learning process.
We propose implicit-reward and inverse reinforcement learning techniques to facilitate agent reflection and policy adjustment.
arXiv Detail & Related papers (2024-11-06T10:35:11Z) - Inverse Attention Agent for Multi-Agent System [6.196239958087161]
A major challenge for Multi-Agent Systems is enabling agents to adapt dynamically to diverse environments in which opponents and teammates may continually change.
We introduce Inverse Attention Agents that adopt concepts from the Theory of Mind, implemented algorithmically using an attention mechanism and trained in an end-to-end manner.
We demonstrate that the inverse attention network successfully infers the attention of other agents, and that this information improves agent performance.
arXiv Detail & Related papers (2024-10-29T06:59:11Z) - DCIR: Dynamic Consistency Intrinsic Reward for Multi-Agent Reinforcement
Learning [84.22561239481901]
We propose a new approach that enables agents to learn whether their behaviors should be consistent with that of other agents.
We evaluate DCIR in multiple environments including Multi-agent Particle, Google Research Football and StarCraft II Micromanagement.
arXiv Detail & Related papers (2023-12-10T06:03:57Z) - Deep Multi-Agent Reinforcement Learning for Decentralized Active
Hypothesis Testing [11.639503711252663]
We tackle the multi-agent active hypothesis testing (AHT) problem by introducing a novel algorithm rooted in the framework of deep multi-agent reinforcement learning.
We present a comprehensive set of experimental results that effectively showcase the agents' ability to learn collaborative strategies and enhance performance.
arXiv Detail & Related papers (2023-09-14T01:18:04Z) - Learning From Good Trajectories in Offline Multi-Agent Reinforcement
Learning [98.07495732562654]
offline multi-agent reinforcement learning (MARL) aims to learn effective multi-agent policies from pre-collected datasets.
One agent learned by offline MARL often inherits this random policy, jeopardizing the performance of the entire team.
We propose a novel framework called Shared Individual Trajectories (SIT) to address this problem.
arXiv Detail & Related papers (2022-11-28T18:11:26Z) - Toward Policy Explanations for Multi-Agent Reinforcement Learning [18.33682005623418]
We present novel methods to generate two types of policy explanations for MARL.
Experimental results on three MARL domains demonstrate the scalability of our methods.
A user study shows that the generated explanations significantly improve user performance and increase subjective ratings on metrics such as user satisfaction.
arXiv Detail & Related papers (2022-04-26T20:07:08Z) - Explaining Reinforcement Learning Policies through Counterfactual
Trajectories [147.7246109100945]
A human developer must validate that an RL agent will perform well at test-time.
Our method conveys how the agent performs under distribution shifts by showing the agent's behavior across a wider trajectory distribution.
In a user study, we demonstrate that our method enables users to score better than baseline methods on one of two agent validation tasks.
arXiv Detail & Related papers (2022-01-29T00:52:37Z) - "I Don't Think So": Disagreement-Based Policy Summaries for Comparing
Agents [2.6270468656705765]
We propose a novel method for generating contrastive summaries that highlight the differences between agent's policies.
Our results show that the novel disagreement-based summaries lead to improved user performance compared to summaries generated using HIGHLIGHTS.
arXiv Detail & Related papers (2021-02-05T09:09:00Z) - Learning to Incentivize Other Learning Agents [73.03133692589532]
We show how to equip RL agents with the ability to give rewards directly to other agents, using a learned incentive function.
Such agents significantly outperform standard RL and opponent-shaping agents in challenging general-sum Markov games.
Our work points toward more opportunities and challenges along the path to ensure the common good in a multi-agent future.
arXiv Detail & Related papers (2020-06-10T20:12:38Z) - Scalable Multi-Agent Inverse Reinforcement Learning via
Actor-Attention-Critic [54.2180984002807]
Multi-agent adversarial inverse reinforcement learning (MA-AIRL) is a recent approach that applies single-agent AIRL to multi-agent problems.
We propose a multi-agent inverse RL algorithm that is more sample-efficient and scalable than previous works.
arXiv Detail & Related papers (2020-02-24T20:30:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.