Interpretable Neural Networks based classifiers for categorical inputs
- URL: http://arxiv.org/abs/2102.03202v1
- Date: Fri, 5 Feb 2021 14:38:50 GMT
- Title: Interpretable Neural Networks based classifiers for categorical inputs
- Authors: Stefano Zamuner, Paolo De Los Rios
- Abstract summary: We introduce a simple way to interpret the output function of a neural network classifier that take as input categorical variables.
We show that in these cases each layer of the network, and the logits layer in particular, can be expanded as a sum of terms that account for the contribution to the classification of each input pattern.
The analysis of the contributions of each pattern, after an appropriate gauge transformation, is presented in two cases where the effectiveness of the method can be appreciated.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Because of the pervasive usage of Neural Networks in human sensitive
applications, their interpretability is becoming an increasingly important
topic in machine learning. In this work we introduce a simple way to interpret
the output function of a neural network classifier that take as input
categorical variables. By exploiting a mapping between a neural network
classifier and a physical energy model, we show that in these cases each layer
of the network, and the logits layer in particular, can be expanded as a sum of
terms that account for the contribution to the classification of each input
pattern. For instance, at the first order, the expansion considers just the
linear relation between input features and output while at the second order
pairwise dependencies between input features are also accounted for. The
analysis of the contributions of each pattern, after an appropriate gauge
transformation, is presented in two cases where the effectiveness of the method
can be appreciated.
Related papers
- Coding schemes in neural networks learning classification tasks [52.22978725954347]
We investigate fully-connected, wide neural networks learning classification tasks.
We show that the networks acquire strong, data-dependent features.
Surprisingly, the nature of the internal representations depends crucially on the neuronal nonlinearity.
arXiv Detail & Related papers (2024-06-24T14:50:05Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
We propose to represent neural networks as computational graphs of parameters.
Our approach enables a single model to encode neural computational graphs with diverse architectures.
We showcase the effectiveness of our method on a wide range of tasks, including classification and editing of implicit neural representations.
arXiv Detail & Related papers (2024-03-18T18:01:01Z) - Instance-wise Linearization of Neural Network for Model Interpretation [13.583425552511704]
The challenge can dive into the non-linear behavior of the neural network.
For a neural network model, the non-linear behavior is often caused by non-linear activation units of a model.
We propose an instance-wise linearization approach to reformulates the forward computation process of a neural network prediction.
arXiv Detail & Related papers (2023-10-25T02:07:39Z) - Towards Rigorous Understanding of Neural Networks via
Semantics-preserving Transformations [0.0]
We present an approach to the precise and global verification and explanation of Rectifier Neural Networks.
Key to our approach is the symbolic execution of these networks that allows the construction of semantically equivalent Typed Affine Decision Structures.
arXiv Detail & Related papers (2023-01-19T11:35:07Z) - Decomposing neural networks as mappings of correlation functions [57.52754806616669]
We study the mapping between probability distributions implemented by a deep feed-forward network.
We identify essential statistics in the data, as well as different information representations that can be used by neural networks.
arXiv Detail & Related papers (2022-02-10T09:30:31Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Dynamic Inference with Neural Interpreters [72.90231306252007]
We present Neural Interpreters, an architecture that factorizes inference in a self-attention network as a system of modules.
inputs to the model are routed through a sequence of functions in a way that is end-to-end learned.
We show that Neural Interpreters perform on par with the vision transformer using fewer parameters, while being transferrable to a new task in a sample efficient manner.
arXiv Detail & Related papers (2021-10-12T23:22:45Z) - Towards Understanding Hierarchical Learning: Benefits of Neural
Representations [160.33479656108926]
In this work, we demonstrate that intermediate neural representations add more flexibility to neural networks.
We show that neural representation can achieve improved sample complexities compared with the raw input.
Our results characterize when neural representations are beneficial, and may provide a new perspective on why depth is important in deep learning.
arXiv Detail & Related papers (2020-06-24T02:44:54Z) - Investigating the Compositional Structure Of Deep Neural Networks [1.8899300124593645]
We introduce a novel theoretical framework based on the compositional structure of piecewise linear activation functions.
It is possible to characterize the instances of the input data with respect to both the predicted label and the specific (linear) transformation used to perform predictions.
Preliminary tests on the MNIST dataset show that our method can group input instances with regard to their similarity in the internal representation of the neural network.
arXiv Detail & Related papers (2020-02-17T14:16:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.