A Survey on Mathematical Aspects of Machine Learning in GeoPhysics: The
Cases of Weather Forecast, Wind Energy, Wave Energy, Oil and Gas Exploration
- URL: http://arxiv.org/abs/2102.03206v1
- Date: Fri, 5 Feb 2021 14:44:34 GMT
- Title: A Survey on Mathematical Aspects of Machine Learning in GeoPhysics: The
Cases of Weather Forecast, Wind Energy, Wave Energy, Oil and Gas Exploration
- Authors: Miroslav Kosanic and Veljko Milutinovic
- Abstract summary: This paper reviews the most notable works applying machine learning techniques (ML) in the context of geophysics and corresponding subbranches.
We showcase both the progress achieved to date as well as the important future directions for further research.
- Score: 1.0279748604797907
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper reviews the most notable works applying machine learning
techniques (ML) in the context of geophysics and corresponding subbranches. We
showcase both the progress achieved to date as well as the important future
directions for further research while providing an adequate background in the
fields of weather forecast, wind energy, wave energy, oil and gas exploration.
The objective is to reflect on the previous successes and provide a
comprehensive review of the synergy between these two fields in order to speed
up the novel approaches of machine learning techniques in geophysics. Last but
not least, we would like to point out possible improvements, some of which are
related to the implementation of ML algorithms using DataFlow paradigm as a
means of performance acceleration.
Related papers
- TPP-Gaze: Modelling Gaze Dynamics in Space and Time with Neural Temporal Point Processes [63.95928298690001]
We present TPP-Gaze, a novel and principled approach to model scanpath dynamics based on Neural Temporal Point Process (TPP)
Our results show the overall superior performance of the proposed model compared to state-of-the-art approaches.
arXiv Detail & Related papers (2024-10-30T19:22:38Z) - Recent Advances on Machine Learning for Computational Fluid Dynamics: A Survey [51.87875066383221]
This paper introduces fundamental concepts, traditional methods, and benchmark datasets, then examine the various roles Machine Learning plays in improving CFD.
We highlight real-world applications of ML for CFD in critical scientific and engineering disciplines, including aerodynamics, combustion, atmosphere & ocean science, biology fluid, plasma, symbolic regression, and reduced order modeling.
We draw the conclusion that ML is poised to significantly transform CFD research by enhancing simulation accuracy, reducing computational time, and enabling more complex analyses of fluid dynamics.
arXiv Detail & Related papers (2024-08-22T07:33:11Z) - Comparative Evaluation of Weather Forecasting using Machine Learning
Models [2.0971479389679337]
This study focuses on analyzing the contributions of various machine learning algorithms in predicting precipitation and temperature patterns using a 20-year dataset from a single weather station in Dhaka city.
Algorithms such as Gradient Boosting, AdaBoosting, Artificial Neural Network, Stacking Random Forest, Stacking Neural Network, and Stacking KNN are evaluated and compared.
arXiv Detail & Related papers (2024-02-02T08:25:28Z) - A Critical Review of Physics-Informed Machine Learning Applications in
Subsurface Energy Systems [0.0]
Physics-informed machine learning (PIML) techniques integrate physics principles into data-driven models.
PIML improves the generalization of the model, abidance by the governing physical laws, and interpretability.
This paper reviews PIML applications related to subsurface energy systems, mainly in the oil and gas industry.
arXiv Detail & Related papers (2023-08-06T18:20:24Z) - Improving aircraft performance using machine learning: a review [57.82442188072833]
This review covers the new developments in machine learning (ML) that are impacting the multi-disciplinary area of aerospace engineering.
We review the state of the art, gathering the advantages and challenges of ML methods across different aerospace disciplines.
arXiv Detail & Related papers (2022-10-20T07:16:53Z) - Machine Learning for a Sustainable Energy Future [8.421378169245827]
We review recent advances in machine learning-driven energy research.
We discuss and evaluate the latest advances in applying ML to the development of energy harvesting.
We offer an outlook of potential research areas in the energy field that stand to further benefit from the application of ML.
arXiv Detail & Related papers (2022-10-19T08:59:53Z) - Physics Informed Shallow Machine Learning for Wind Speed Prediction [66.05661813632568]
We analyze a massive dataset of wind measured from anemometers located at 10 m height in 32 locations in Italy.
We train supervised learning algorithms using the past history of wind to predict its value at a future time.
We find that the optimal design as well as its performance vary with the location.
arXiv Detail & Related papers (2022-04-01T14:55:10Z) - Shared Data and Algorithms for Deep Learning in Fundamental Physics [4.914920952758052]
We introduce a collection of datasets from fundamental physics research -- including particle physics, astroparticle physics, and hadron- and nuclear physics.
These datasets, containing had top quarks, cosmic-ray induced air showers, phase transitions in hadronic matter, and generator-level histories, are made public.
We present a simple yet flexible graph-based neural network architecture that can easily be applied to a wide range of supervised learning tasks.
arXiv Detail & Related papers (2021-07-01T18:00:00Z) - Hybrid and Automated Machine Learning Approaches for Oil Fields
Development: the Case Study of Volve Field, North Sea [58.720142291102135]
The paper describes the usage of intelligent approaches for field development tasks that may assist a decision-making process.
We focus on the problem of wells location optimization and two tasks within it: improving the quality of oil production estimation and estimation of reservoir characteristics.
The implemented approaches can be used to analyze different oil fields or adapted to similar physics-related problems.
arXiv Detail & Related papers (2021-03-03T18:51:46Z) - A Data Scientist's Guide to Streamflow Prediction [55.22219308265945]
We focus on the element of hydrologic rainfall--runoff models and their application to forecast floods and predict streamflow.
This guide aims to help interested data scientists gain an understanding of the problem, the hydrologic concepts involved, and the details that come up along the way.
arXiv Detail & Related papers (2020-06-05T08:04:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.