Roadmap on Integrated Quantum Photonics
- URL: http://arxiv.org/abs/2102.03323v2
- Date: Wed, 22 Sep 2021 21:33:12 GMT
- Title: Roadmap on Integrated Quantum Photonics
- Authors: Galan Moody, Volker J. Sorger, Daniel J. Blumenthal, Paul W.
Juodawlkis, William Loh, Cheryl Sorace-Agaskar, Alex E. Jones, Krishna C.
Balram, Jonathan C. F. Matthews, Anthony Laing, Marcelo Davanco, Lin Chang,
John E. Bowers, Niels Quack, Christophe Galland, Igor Aharonovich, Martin A.
Wolff, Carsten Schuck, Neil Sinclair, Marko Lon\v{c}ar, Tin Komljenovic,
David Weld, Shayan Mookherjea, Sonia Buckley, Marina Radulaski, Stephan
Reitzenstein, Benjamin Pingault, Bartholomeus Machielse, Debsuvra
Mukhopadhyay, Alexey Akimov, Aleksei Zheltikov, Girish S. Agarwal, Kartik
Srinivasan, Juanjuan Lu, Hong X. Tang, Wentao Jiang, Timothy P. McKenna, Amir
H. Safavi-Naeini, Stephan Steinhauer, Ali W. Elshaari, Val Zwiller, Paul S.
Davids, Nicholas Martinez, Michael Gehl, John Chiaverini, Karan K. Mehta,
Jacquiline Romero, Navin B. Lingaraju, Andrew M. Weiner, Daniel Peace, Robert
Cernansky, Mirko Lobino, Eleni Diamanti, Luis Trigo Vidarte, and Ryan M.
Camacho
- Abstract summary: In the next decade, with sustained research, development, and investment in the quantum photonic ecosystem, we will witness the transition from single- and few-function prototypes to the large-scale integration of multi-functional and reconfigurable QPICs.
This roadmap highlights the current progress in the field of integrated quantum photonics, future challenges, and advances in science and technology needed to meet these challenges.
- Score: 0.9353686719467478
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Integrated photonics is at the heart of many classical technologies, from
optical communications to biosensors, LIDAR, and data center fiber
interconnects. There is strong evidence that these integrated technologies will
play a key role in quantum systems as they grow from few-qubit prototypes to
tens of thousands of qubits. The underlying laser and optical quantum
technologies, with the required functionality and performance, can only be
realized through the integration of these components onto quantum photonic
integrated circuits (QPICs) with accompanying electronics. In the last decade,
remarkable advances in quantum photonic integration and a dramatic reduction in
optical losses have enabled benchtop experiments to be scaled down to prototype
chips with improvements in efficiency, robustness, and key performance metrics.
The reduction in size, weight, power, and improvement in stability that will be
enabled by QPICs will play a key role in increasing the degree of complexity
and scale in quantum demonstrations. In the next decade, with sustained
research, development, and investment in the quantum photonic ecosystem (i.e.
PIC-based platforms, devices and circuits, fabrication and integration
processes, packaging, and testing and benchmarking), we will witness the
transition from single- and few-function prototypes to the large-scale
integration of multi-functional and reconfigurable QPICs that will define how
information is processed, stored, transmitted, and utilized for quantum
computing, communications, metrology, and sensing. This roadmap highlights the
current progress in the field of integrated quantum photonics, future
challenges, and advances in science and technology needed to meet these
challenges.
Related papers
- Information processing at the speed of light [0.0]
The introduction of quantum photonic chips has ushered in an era marked by scalability, stability, and cost-effectiveness.
This article provides a comprehensive exploration of photonic quantum computing, covering key aspects such as encoding information in photons.
The review further navigates the path towards establishing scalable and fault-tolerant photonic quantum computers.
arXiv Detail & Related papers (2024-10-01T06:43:44Z) - On chip high-dimensional entangled photon sources [0.0]
We review and introduce the nonlinear optical processes that facilitate on-chip high-dimensional entangled photon sources.
We discuss a range of current implementations of on-chip high-dimensional entangled photon sources and demonstrated applications.
arXiv Detail & Related papers (2024-09-05T03:43:10Z) - Large-scale quantum reservoir learning with an analog quantum computer [45.21335836399935]
We develop a quantum reservoir learning algorithm that harnesses the quantum dynamics of neutral-atom analog quantum computers to process data.
We experimentally implement the algorithm, achieving competitive performance across various categories of machine learning tasks.
Our findings demonstrate the potential of utilizing classically intractable quantum correlations for effective machine learning.
arXiv Detail & Related papers (2024-07-02T18:00:00Z) - Advances in silicon quantum photonics [0.5823835334368094]
Quantum technology is poised to enable a step change in human capability for computing, communications and sensing.
For quantum technology to be implemented, a new paradigm photonic system is required.
Silicon photonics has unparalleled density and component performance.
arXiv Detail & Related papers (2022-07-06T13:11:26Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Standard Model Physics and the Digital Quantum Revolution: Thoughts
about the Interface [68.8204255655161]
Advances in isolating, controlling and entangling quantum systems are transforming what was once a curious feature of quantum mechanics into a vehicle for disruptive scientific and technological progress.
From the perspective of three domain science theorists, this article compiles thoughts about the interface on entanglement, complexity, and quantum simulation.
arXiv Detail & Related papers (2021-07-10T06:12:06Z) - Single-photon quantum hardware: towards scalable photonic quantum
technology with a quantum advantage [0.41998444721319217]
We will present the current state-of-the-art in single-photon quantum hardware and the main photonic building blocks required in order to scale up.
We will point out specific promising applications of the hardware building blocks within quantum communication and photonic quantum computing.
arXiv Detail & Related papers (2021-03-01T16:22:59Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
We experimentally achieve the learning and generation of real-world hand-written digit images on a superconducting quantum processor.
Our work provides guidance for developing advanced quantum generative models on near-term quantum devices.
arXiv Detail & Related papers (2020-10-13T06:57:17Z) - Rapid characterisation of linear-optical networks via PhaseLift [51.03305009278831]
Integrated photonics offers great phase-stability and can rely on the large scale manufacturability provided by the semiconductor industry.
New devices, based on such optical circuits, hold the promise of faster and energy-efficient computations in machine learning applications.
We present a novel technique to reconstruct the transfer matrix of linear optical networks.
arXiv Detail & Related papers (2020-10-01T16:04:22Z) - Integrated Photonic Quantum Technologies [0.8220217498103314]
Review summarises the advances in integrated photonic quantum technologies.
It includes secure quantum communications, simulations of quantum physical and chemical systems, Boson sampling, and linear-optic quantum information processing.
arXiv Detail & Related papers (2020-05-05T05:28:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.