Tunable photon-mediated interactions between spin-1 systems
- URL: http://arxiv.org/abs/2206.01611v1
- Date: Fri, 3 Jun 2022 14:52:34 GMT
- Title: Tunable photon-mediated interactions between spin-1 systems
- Authors: Cristian Tabares, Erez Zohar, Alejandro Gonz\'alez-Tudela
- Abstract summary: We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
- Score: 68.8204255655161
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The exchange of virtual photons between quantum optical emitters in cavity
QED or quantum nanophotonic setups induces interactions between them which can
be harnessed for quantum information and simulation purposes. So far, these
interactions have been mostly characterized for two-level emitters, which
restrict their application to engineering quantum gates among qubits or
simulating spin-1/2 quantum many-body models. Here, we show how to harness
multi-level emitters with several optical transitions to engineer a wide class
of photon-mediated interactions between effective spin-1 systems. We
characterize their performance through analytical and numerical techniques, and
provide specific implementations based on the atomic level structure of Alkali
atoms. Our results expand the quantum simulation toolbox available in such
cavity QED and quantum nanophotonic setups, and open up new ways of engineering
entangling gates among qutrits.
Related papers
- Non-classical excitation of a solid-state quantum emitter [0.0]
We show that a single photon is sufficient to change the state of a solid-state quantum emitter.
These results suggest future possibilities ranging from enabling quantum information transfer in a quantum network to building deterministic entangling gates for photonic quantum computing.
arXiv Detail & Related papers (2024-07-30T16:16:58Z) - Nanowire-based Integrated Photonics for Quantum Information and Quantum
Sensing [5.594103291124019]
We systematically summarize the working theory, material platform, fabrication process, and game-changing applications enabled by state-of-the-art quantum dots.
We highlight several burgeoning quantum photonics applications using nanowires and discuss development trends of integrated quantum photonics.
arXiv Detail & Related papers (2023-07-18T11:54:19Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Dynamical photon-photon interaction mediated by a quantum emitter [1.9677315976601693]
Single photons constitute a main platform in quantum science and technology.
Main challenge in quantum photonics is how to generate advanced entangled resource states and efficient light-matter interfaces.
We utilize the efficient and coherent coupling of a single quantum emitter to a nanophotonic waveguide for realizing quantum nonlinear interaction between single-photon wavepackets.
arXiv Detail & Related papers (2021-12-13T17:33:30Z) - Cooperative quantum phenomena in light-matter platforms [0.34376560669160383]
cooperativity is evident in light-matter platforms where quantum emitter ensembles are interfaced with confined optical modes.
This tutorial provides a set of theoretical tools to tackle the behavior responsible for the onset of cooperativity.
arXiv Detail & Related papers (2021-07-06T15:27:23Z) - Multidimensional cluster states using a single spin-photon interface
coupled strongly to an intrinsic nuclear register [48.7576911714538]
Photonic cluster states are a powerful resource for measurement-based quantum computing and loss-tolerant quantum communication.
We propose the generation of multi-dimensional lattice cluster states using a single, efficient spin-photon interface coupled strongly to a nuclear register.
arXiv Detail & Related papers (2021-04-26T14:41:01Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Design of Light-Matter Interactions for Quantum Technologies [0.0]
We design radiation patterns capable of creating effective light-matter interactions suited to applications in quantum computing, quantum simulation and quantum sensing.
On the one hand, we have used dynamical decoupling techniques to design quantum operations that are robust against errors in environmental and control fields.
On the other hand, we have studied generalised models of light-matter interaction, leading to the discovery of selective multi-photon interactions in the Rabi-Stark model.
arXiv Detail & Related papers (2021-01-27T21:30:36Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - Coupling colloidal quantum dots to gap waveguides [62.997667081978825]
coupling between single photon emitters and integrated photonic circuits is an emerging topic relevant for quantum information science and other nanophotonic applications.
We investigate the coupling between a hybrid system of colloidal quantum dots and propagating gap modes of a silicon nitride waveguide system.
arXiv Detail & Related papers (2020-03-30T21:18:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.