A Systematic Approach for MRI Brain Tumor Localization, and Segmentation
using Deep Learning and Active Contouring
- URL: http://arxiv.org/abs/2102.03532v1
- Date: Sat, 6 Feb 2021 07:53:02 GMT
- Title: A Systematic Approach for MRI Brain Tumor Localization, and Segmentation
using Deep Learning and Active Contouring
- Authors: Shanaka Ramesh Gunasekara and H.N.T.K.Kaldera and Maheshi B.
Dissanayake
- Abstract summary: We present a threefold deep learning architecture for annotation and segmentation of tumor boundaries.
A Chan-Vesesegmentation algorithm was applied to detect the tumor boundaries for the segmentation process.
Overall performance of the proposed architecture for both glioma and meningioma segmentation is with average dice score of 0.92.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: One of the main requirements of tumor extraction is the annotation and
segmentation of tumor boundaries correctly. For this purpose, we present a
threefold deep learning architecture. First classifiers are implemented with a
deep convolutional neural network(CNN) andsecond a region-based convolutional
neural network (R-CNN) is performed on the classified images to localize the
tumor regions of interest. As the third and final stage, the concentratedtumor
boundary is contoured for the segmentation process by using the
Chan-Vesesegmentation algorithm. As the typical edge detection algorithms based
on gradients of pixel intensity tend to fail in the medical image segmentation
process, an active contour algorithm defined with the level set function is
proposed. Specifically, Chan- Vese algorithm was applied to detect the tumor
boundaries for the segmentation process. To evaluate the performance of the
overall system, Dice Score,Rand Index (RI), Variation of Information (VOI),
Global Consistency Error (GCE), Boundary Displacement Error (BDE), Mean
absolute error (MAE), and Peak Signal to Noise Ratio (PSNR) werecalculated by
comparing the segmented boundary area which is the final output of the
proposed, against the demarcations of the subject specialists which is the gold
standard. Overall performance of the proposed architecture for both glioma and
meningioma segmentation is with average dice score of 0.92, (also, with RI of
0.9936, VOI of 0.0301, GCE of 0.004, BDE of 2.099, PSNR of 77.076 and MAE of
52.946), pointing to high reliability of the proposed architecture.
Related papers
- Lumbar Spine Tumor Segmentation and Localization in T2 MRI Images Using AI [2.9746083684997418]
This study introduces a novel data augmentation technique, aimed at automating spine tumor segmentation and localization through AI approaches.
A Convolutional Neural Network (CNN) architecture is employed for tumor classification. 3D vertebral segmentation and labeling techniques are used to help pinpoint the exact location of the tumors in the lumbar spine.
Results indicate a remarkable performance, with 99% accuracy for tumor segmentation, 98% accuracy for tumor classification, and 99% accuracy for tumor localization achieved with the proposed approach.
arXiv Detail & Related papers (2024-05-07T05:55:50Z) - Assessing the performance of deep learning-based models for prostate
cancer segmentation using uncertainty scores [1.0499611180329804]
The aim is to improve the workflow of prostate cancer detection and diagnosis.
The top-performing model is the Attention R2U-Net, achieving a mean Intersection over Union (IoU) of 76.3% and Dice Similarity Coefficient (DSC) of 85% for segmenting all zones.
arXiv Detail & Related papers (2023-08-09T01:38:58Z) - 3D PETCT Tumor Lesion Segmentation via GCN Refinement [4.929126432666667]
We propose a post-processing method based on a graph convolutional neural network (GCN) to refine inaccurate segmentation parts.
We perform tumor segmentation experiments on the PET/CT dataset in the MICCIA2022 autoPET challenge.
The experimental results show that the false positive rate is effectively reduced with nnUNet-GCN refinement.
arXiv Detail & Related papers (2023-02-24T10:52:08Z) - Acute ischemic stroke lesion segmentation in non-contrast CT images
using 3D convolutional neural networks [0.0]
We propose an automatic algorithm aimed at volumetric segmentation of acute ischemic stroke lesion in non-contrast computed tomography brain 3D images.
Our deep-learning approach is based on the popular 3D U-Net convolutional neural network architecture.
arXiv Detail & Related papers (2023-01-17T10:39:39Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
We propose a two-stream graph convolutional network (i.e., TSGCN) to handle inter-view confusion between different raw attributes.
Our TSGCN significantly outperforms state-of-the-art methods in 3D tooth (surface) segmentation.
arXiv Detail & Related papers (2022-04-19T10:41:09Z) - A unified 3D framework for Organs at Risk Localization and Segmentation
for Radiation Therapy Planning [56.52933974838905]
Current medical workflow requires manual delineation of organs-at-risk (OAR)
In this work, we aim to introduce a unified 3D pipeline for OAR localization-segmentation.
Our proposed framework fully enables the exploitation of 3D context information inherent in medical imaging.
arXiv Detail & Related papers (2022-03-01T17:08:41Z) - PSGR: Pixel-wise Sparse Graph Reasoning for COVID-19 Pneumonia
Segmentation in CT Images [83.26057031236965]
We propose a pixel-wise sparse graph reasoning (PSGR) module to enhance the modeling of long-range dependencies for COVID-19 infected region segmentation in CT images.
The PSGR module avoids imprecise pixel-to-node projections and preserves the inherent information of each pixel for global reasoning.
The solution has been evaluated against four widely-used segmentation models on three public datasets.
arXiv Detail & Related papers (2021-08-09T04:58:23Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
We propose a segmentation refinement method based on uncertainty analysis and graph convolutional networks.
We employ the uncertainty levels of the convolutional network in a particular input volume to formulate a semi-supervised graph learning problem.
We show that our method outperforms the state-of-the-art CRF refinement method by improving the dice score by 1% for the pancreas and 2% for spleen.
arXiv Detail & Related papers (2020-12-06T18:55:07Z) - Unsupervised Region-based Anomaly Detection in Brain MRI with
Adversarial Image Inpainting [4.019851137611981]
This paper proposes a fully automatic, unsupervised inpainting-based brain tumour segmentation system for T1-weighted MRI.
First, a deep convolutional neural network (DCNN) is trained to reconstruct missing healthy brain regions. Then, anomalous regions are determined by identifying areas of highest reconstruction loss.
We show the proposed system is able to segment various sized and abstract tumours and achieves a mean and standard deviation Dice score of 0.771 and 0.176, respectively.
arXiv Detail & Related papers (2020-10-05T12:13:44Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
" 2018 Left Atrium Challenge" using 154 3D LGE-MRIs, currently the world's largest cardiac LGE-MRI dataset.
Analyse of the submitted algorithms using technical and biological metrics was performed.
Results show the top method achieved a dice score of 93.2% and a mean surface to a surface distance of 0.7 mm.
arXiv Detail & Related papers (2020-04-26T08:49:17Z) - VerSe: A Vertebrae Labelling and Segmentation Benchmark for
Multi-detector CT Images [121.31355003451152]
Large Scale Vertebrae Challenge (VerSe) was organised in conjunction with the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) in 2019 and 2020.
We present the the results of this evaluation and further investigate the performance-variation at vertebra-level, scan-level, and at different fields-of-view.
arXiv Detail & Related papers (2020-01-24T21:09:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.