Adversarial Training of Variational Auto-encoders for Continual
Zero-shot Learning
- URL: http://arxiv.org/abs/2102.03778v1
- Date: Sun, 7 Feb 2021 11:21:24 GMT
- Title: Adversarial Training of Variational Auto-encoders for Continual
Zero-shot Learning
- Authors: Subhankar Ghosh
- Abstract summary: We present a hybrid network that consists of a shared VAE module to hold information of all tasks and task-specific private VAE modules for each task.
The model's size grows with each task to prevent catastrophic forgetting of task-specific skills.
We show our method is superior on class sequentially learning with ZSL(Zero-Shot Learning) and GZSL(Generalized Zero-Shot Learning)
- Score: 1.90365714903665
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Most of the existing artificial neural networks(ANNs) fail to learn
continually due to catastrophic forgetting, while humans can do the same by
maintaining previous tasks' performances. Although storing all the previous
data can alleviate the problem, it takes a large memory, infeasible in
real-world utilization. We propose a continual zero-shot learning model that is
more suitable in real-case scenarios to address the issue that can learn
sequentially and distinguish classes the model has not seen during training. We
present a hybrid network that consists of a shared VAE module to hold
information of all tasks and task-specific private VAE modules for each task.
The model's size grows with each task to prevent catastrophic forgetting of
task-specific skills, and it includes a replay approach to preserve shared
skills. We demonstrate our hybrid model is effective on several datasets, i.e.,
CUB, AWA1, AWA2, and aPY. We show our method is superior on class sequentially
learning with ZSL(Zero-Shot Learning) and GZSL(Generalized Zero-Shot Learning).
Related papers
- Continual Zero-Shot Learning through Semantically Guided Generative
Random Walks [56.65465792750822]
We address the challenge of continual zero-shot learning where unseen information is not provided during training, by leveraging generative modeling.
We propose our learning algorithm that employs a novel semantically guided Generative Random Walk (GRW) loss.
Our algorithm achieves state-of-the-art performance on AWA1, AWA2, CUB, and SUN datasets, surpassing existing CZSL methods by 3-7%.
arXiv Detail & Related papers (2023-08-23T18:10:12Z) - Learn, Unlearn and Relearn: An Online Learning Paradigm for Deep Neural
Networks [12.525959293825318]
We introduce Learn, Unlearn, and Relearn (LURE) an online learning paradigm for deep neural networks (DNNs)
LURE interchanges between the unlearning phase, which selectively forgets the undesirable information in the model, and the relearning phase, which emphasizes learning on generalizable features.
We show that our training paradigm provides consistent performance gains across datasets in both classification and few-shot settings.
arXiv Detail & Related papers (2023-03-18T16:45:54Z) - Preventing Catastrophic Forgetting in Continual Learning of New Natural
Language Tasks [17.879087904904935]
Multi-Task Learning (MTL) is widely-accepted in Natural Language Processing as a standard technique for learning multiple related tasks in one model.
As systems usually evolve over time, adding a new task to an existing MTL model usually requires retraining the model from scratch on all the tasks.
In this paper, we approach the problem of incrementally expanding MTL models' capability to solve new tasks over time by distilling the knowledge of an already trained model on n tasks into a new one for solving n+1 tasks.
arXiv Detail & Related papers (2023-02-22T00:18:25Z) - DATA: Domain-Aware and Task-Aware Pre-training [94.62676913928831]
We present DATA, a simple yet effective NAS approach specialized for self-supervised learning (SSL)
Our method achieves promising results across a wide range of computation costs on downstream tasks, including image classification, object detection and semantic segmentation.
arXiv Detail & Related papers (2022-03-17T02:38:49Z) - Task-agnostic Continual Learning with Hybrid Probabilistic Models [75.01205414507243]
We propose HCL, a Hybrid generative-discriminative approach to Continual Learning for classification.
The flow is used to learn the data distribution, perform classification, identify task changes, and avoid forgetting.
We demonstrate the strong performance of HCL on a range of continual learning benchmarks such as split-MNIST, split-CIFAR, and SVHN-MNIST.
arXiv Detail & Related papers (2021-06-24T05:19:26Z) - Shared and Private VAEs with Generative Replay for Continual Learning [1.90365714903665]
Continual learning tries to learn new tasks without forgetting previously learned ones.
Most of the existing artificial neural network(ANN) models fail, while humans do the same by remembering previous works throughout their life.
We show our hybrid model effectively avoids forgetting and achieves state-of-the-art results on visual continual learning benchmarks such as MNIST, Permuted MNIST(QMNIST), CIFAR100, and miniImageNet datasets.
arXiv Detail & Related papers (2021-05-17T06:18:36Z) - Dynamic VAEs with Generative Replay for Continual Zero-shot Learning [1.90365714903665]
This paper proposes a novel continual zero-shot learning (DVGR-CZSL) model that grows in size with each task and uses generative replay to update itself with previously learned classes to avoid forgetting.
We show our method is superior in task sequentially learning with ZSL(Zero-Shot Learning)
arXiv Detail & Related papers (2021-04-26T10:56:43Z) - Rectification-based Knowledge Retention for Continual Learning [49.1447478254131]
Deep learning models suffer from catastrophic forgetting when trained in an incremental learning setting.
We propose a novel approach to address the task incremental learning problem, which involves training a model on new tasks that arrive in an incremental manner.
Our approach can be used in both the zero-shot and non zero-shot task incremental learning settings.
arXiv Detail & Related papers (2021-03-30T18:11:30Z) - Meta-Learned Attribute Self-Gating for Continual Generalized Zero-Shot
Learning [82.07273754143547]
We propose a meta-continual zero-shot learning (MCZSL) approach to generalizing a model to categories unseen during training.
By pairing self-gating of attributes and scaled class normalization with meta-learning based training, we are able to outperform state-of-the-art results.
arXiv Detail & Related papers (2021-02-23T18:36:14Z) - Continual Learning Using Multi-view Task Conditional Neural Networks [6.27221711890162]
Conventional deep learning models have limited capacity in learning multiple tasks sequentially.
We propose Multi-view Task Conditional Neural Networks (Mv-TCNN) that does not require to known the reoccurring tasks in advance.
arXiv Detail & Related papers (2020-05-08T01:03:30Z) - Adversarial Continual Learning [99.56738010842301]
We propose a hybrid continual learning framework that learns a disjoint representation for task-invariant and task-specific features.
Our model combines architecture growth to prevent forgetting of task-specific skills and an experience replay approach to preserve shared skills.
arXiv Detail & Related papers (2020-03-21T02:08:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.