Continual Learning Using Multi-view Task Conditional Neural Networks
- URL: http://arxiv.org/abs/2005.05080v3
- Date: Mon, 13 Jul 2020 09:19:07 GMT
- Title: Continual Learning Using Multi-view Task Conditional Neural Networks
- Authors: Honglin Li, Payam Barnaghi, Shirin Enshaeifar, Frieder Ganz
- Abstract summary: Conventional deep learning models have limited capacity in learning multiple tasks sequentially.
We propose Multi-view Task Conditional Neural Networks (Mv-TCNN) that does not require to known the reoccurring tasks in advance.
- Score: 6.27221711890162
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Conventional deep learning models have limited capacity in learning multiple
tasks sequentially. The issue of forgetting the previously learned tasks in
continual learning is known as catastrophic forgetting or interference. When
the input data or the goal of learning change, a continual model will learn and
adapt to the new status. However, the model will not remember or recognise any
revisits to the previous states. This causes performance reduction and
re-training curves in dealing with periodic or irregularly reoccurring changes
in the data or goals. The changes in goals or data are referred to as new tasks
in a continual learning model. Most of the continual learning methods have a
task-known setup in which the task identities are known in advance to the
learning model. We propose Multi-view Task Conditional Neural Networks
(Mv-TCNN) that does not require to known the reoccurring tasks in advance. We
evaluate our model on standard datasets using MNIST, CIFAR10, CIFAR100, and
also a real-world dataset that we have collected in a remote healthcare
monitoring study (i.e. TIHM dataset). The proposed model outperforms the
state-of-the-art solutions in continual learning and adapting to new tasks that
are not defined in advance.
Related papers
- Adaptive Rentention & Correction for Continual Learning [114.5656325514408]
A common problem in continual learning is the classification layer's bias towards the most recent task.
We name our approach Adaptive Retention & Correction (ARC)
ARC achieves an average performance increase of 2.7% and 2.6% on the CIFAR-100 and Imagenet-R datasets.
arXiv Detail & Related papers (2024-05-23T08:43:09Z) - Learn to Unlearn for Deep Neural Networks: Minimizing Unlearning
Interference with Gradient Projection [56.292071534857946]
Recent data-privacy laws have sparked interest in machine unlearning.
Challenge is to discard information about the forget'' data without altering knowledge about remaining dataset.
We adopt a projected-gradient based learning method, named as Projected-Gradient Unlearning (PGU)
We provide empirically evidence to demonstrate that our unlearning method can produce models that behave similar to models retrained from scratch across various metrics even when the training dataset is no longer accessible.
arXiv Detail & Related papers (2023-12-07T07:17:24Z) - Negotiated Representations to Prevent Forgetting in Machine Learning
Applications [0.0]
Catastrophic forgetting is a significant challenge in the field of machine learning.
We propose a novel method for preventing catastrophic forgetting in machine learning applications.
arXiv Detail & Related papers (2023-11-30T22:43:50Z) - Towards Robust Continual Learning with Bayesian Adaptive Moment Regularization [51.34904967046097]
Continual learning seeks to overcome the challenge of catastrophic forgetting, where a model forgets previously learnt information.
We introduce a novel prior-based method that better constrains parameter growth, reducing catastrophic forgetting.
Results show that BAdam achieves state-of-the-art performance for prior-based methods on challenging single-headed class-incremental experiments.
arXiv Detail & Related papers (2023-09-15T17:10:51Z) - Learning Objective-Specific Active Learning Strategies with Attentive
Neural Processes [72.75421975804132]
Learning Active Learning (LAL) suggests to learn the active learning strategy itself, allowing it to adapt to the given setting.
We propose a novel LAL method for classification that exploits symmetry and independence properties of the active learning problem.
Our approach is based on learning from a myopic oracle, which gives our model the ability to adapt to non-standard objectives.
arXiv Detail & Related papers (2023-09-11T14:16:37Z) - Preventing Catastrophic Forgetting in Continual Learning of New Natural
Language Tasks [17.879087904904935]
Multi-Task Learning (MTL) is widely-accepted in Natural Language Processing as a standard technique for learning multiple related tasks in one model.
As systems usually evolve over time, adding a new task to an existing MTL model usually requires retraining the model from scratch on all the tasks.
In this paper, we approach the problem of incrementally expanding MTL models' capability to solve new tasks over time by distilling the knowledge of an already trained model on n tasks into a new one for solving n+1 tasks.
arXiv Detail & Related papers (2023-02-22T00:18:25Z) - Shared and Private VAEs with Generative Replay for Continual Learning [1.90365714903665]
Continual learning tries to learn new tasks without forgetting previously learned ones.
Most of the existing artificial neural network(ANN) models fail, while humans do the same by remembering previous works throughout their life.
We show our hybrid model effectively avoids forgetting and achieves state-of-the-art results on visual continual learning benchmarks such as MNIST, Permuted MNIST(QMNIST), CIFAR100, and miniImageNet datasets.
arXiv Detail & Related papers (2021-05-17T06:18:36Z) - Continual Learning via Bit-Level Information Preserving [88.32450740325005]
We study the continual learning process through the lens of information theory.
We propose Bit-Level Information Preserving (BLIP) that preserves the information gain on model parameters.
BLIP achieves close to zero forgetting while only requiring constant memory overheads throughout continual learning.
arXiv Detail & Related papers (2021-05-10T15:09:01Z) - Lifelong Learning of Few-shot Learners across NLP Tasks [45.273018249235705]
We study the challenge of lifelong learning to few-shot learn over a sequence of diverse NLP tasks.
We propose a continual meta-learning approach which learns to generate adapter weights from a few examples.
We demonstrate our approach preserves model performance over training tasks and leads to positive knowledge transfer when the future tasks are learned.
arXiv Detail & Related papers (2021-04-18T10:41:56Z) - Adversarial Training of Variational Auto-encoders for Continual
Zero-shot Learning [1.90365714903665]
We present a hybrid network that consists of a shared VAE module to hold information of all tasks and task-specific private VAE modules for each task.
The model's size grows with each task to prevent catastrophic forgetting of task-specific skills.
We show our method is superior on class sequentially learning with ZSL(Zero-Shot Learning) and GZSL(Generalized Zero-Shot Learning)
arXiv Detail & Related papers (2021-02-07T11:21:24Z) - Goal-Aware Prediction: Learning to Model What Matters [105.43098326577434]
One of the fundamental challenges in using a learned forward dynamics model is the mismatch between the objective of the learned model and that of the downstream planner or policy.
We propose to direct prediction towards task relevant information, enabling the model to be aware of the current task and encouraging it to only model relevant quantities of the state space.
We find that our method more effectively models the relevant parts of the scene conditioned on the goal, and as a result outperforms standard task-agnostic dynamics models and model-free reinforcement learning.
arXiv Detail & Related papers (2020-07-14T16:42:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.