論文の概要: Double Momentum SGD for Federated Learning
- arxiv url: http://arxiv.org/abs/2102.03970v1
- Date: Mon, 8 Feb 2021 02:47:24 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-09 15:20:10.091147
- Title: Double Momentum SGD for Federated Learning
- Title(参考訳): フェデレーションラーニングのためのダブルモーメントSGD
- Authors: An Xu, Heng Huang
- Abstract要約: 我々は、フェデレート学習におけるモデル性能を改善するために、DOMOと呼ばれる新しいSGD変種を提案する。
1つのモメンタバッファはサーバ更新方向を追跡し、もう1つはローカル更新方向を追跡します。
本稿では,サーバとローカルモーメントSGDを協調する新しいサーバモーメント融合手法を提案する。
- 参考スコア(独自算出の注目度): 94.58442574293021
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Communication efficiency is crucial in federated learning. Conducting many
local training steps in clients to reduce the communication frequency between
clients and the server is a common method to address this issue. However, the
client drift problem arises as the non-i.i.d. data distributions in different
clients can severely deteriorate the performance of federated learning. In this
work, we propose a new SGD variant named as DOMO to improve the model
performance in federated learning, where double momentum buffers are
maintained. One momentum buffer tracks the server update direction, while the
other tracks the local update direction. We introduce a novel server momentum
fusion technique to coordinate the server and local momentum SGD. We also
provide the first theoretical analysis involving both the server and local
momentum SGD. Extensive experimental results show a better model performance of
DOMO than FedAvg and existing momentum SGD variants in federated learning
tasks.
- Abstract(参考訳): 連帯学習ではコミュニケーション効率が重要である。
クライアントとサーバ間の通信頻度を減らすためにクライアントで多くのローカルトレーニングステップを実行することは、この問題に対処する一般的な方法です。
しかし、クライアントドリフト問題は非i.i.dとして生じる。
異なるクライアントのデータ分散は、フェデレーション学習のパフォーマンスを著しく低下させる可能性がある。
本研究では,2つの運動量バッファが維持されるフェデレート学習におけるモデル性能を改善するため,DOMOと呼ばれる新しいSGD変種を提案する。
1つのモーメントバッファはサーバ更新方向を追跡し、もう1つはローカル更新方向を追跡する。
本稿では,サーバとローカルモーメントSGDを協調する新しいサーバモーメント融合手法を提案する。
また,サーバと局所運動量sgdの両方に関する最初の理論的解析を行う。
FedAvg よりも DOMO のモデル性能が向上し,既存の学習課題における SGD 変量も向上した。
関連論文リスト
- FedMoE-DA: Federated Mixture of Experts via Domain Aware Fine-grained Aggregation [22.281467168796645]
Federated Learning(FL)は、複数のクライアントがプライベートデータを共有せずにモデルをトレーニングできる、コラボレーティブな機械学習アプローチである。
我々は、新しいドメイン認識、きめ細かい集約戦略を取り入れた新しいFLモデルトレーニングフレームワークであるFedMoE-DAを提案し、ロバスト性、パーソナライズ性、通信効率を同時に向上する。
論文 参考訳(メタデータ) (2024-11-04T14:29:04Z) - Achieving Linear Speedup in Asynchronous Federated Learning with
Heterogeneous Clients [30.135431295658343]
フェデレートラーニング(FL)は、異なるクライアントにローカルに保存されているデータを交換したり転送したりすることなく、共通のグローバルモデルを学ぶことを目的としている。
本稿では,DeFedAvgという,効率的な連邦学習(AFL)フレームワークを提案する。
DeFedAvgは、望まれる線形スピードアップ特性を達成する最初のAFLアルゴリズムであり、高いスケーラビリティを示している。
論文 参考訳(メタデータ) (2024-02-17T05:22:46Z) - Scheduling and Communication Schemes for Decentralized Federated
Learning [0.31410859223862103]
勾配降下(SGD)アルゴリズムを用いた分散連合学習(DFL)モデルが導入された。
DFLの3つのスケジューリングポリシーがクライアントと並列サーバ間の通信のために提案されている。
その結果,提案した計画警察は,収束速度と最終グローバルモデルの両方に影響を及ぼすことがわかった。
論文 参考訳(メタデータ) (2023-11-27T17:35:28Z) - FedLALR: Client-Specific Adaptive Learning Rates Achieve Linear Speedup
for Non-IID Data [54.81695390763957]
フェデレートラーニング(Federated Learning)は、分散機械学習の手法である。
我々は,AMSGradの異種局所変種であるFedLALRを提案し,各クライアントが学習率を調整する。
クライアントが指定した自動調整型学習率スケジューリングが,クライアント数に対して収束し,線形高速化を実現することを示す。
論文 参考訳(メタデータ) (2023-09-18T12:35:05Z) - Joint Client Assignment and UAV Route Planning for
Indirect-Communication Federated Learning [20.541942109704987]
FedEx (Federated Learning via Model Express Delivery)と呼ばれる新しいフレームワークが提案されている。
UAVのような移動体トランスポーターを使用して、サーバとクライアント間の間接的な通信チャネルを確立する。
FedEx-SyncとFedEx-Asyncという2つのアルゴリズムがトランスポーターレベルで同期および非同期学習のために提案されている。
論文 参考訳(メタデータ) (2023-04-21T04:47:54Z) - Scalable Collaborative Learning via Representation Sharing [53.047460465980144]
フェデレートラーニング(FL)とスプリットラーニング(SL)は、データを(デバイス上で)プライベートにしながら協調学習を可能にする2つのフレームワークである。
FLでは、各データ保持者がモデルをローカルにトレーニングし、集約のために中央サーバにリリースする。
SLでは、クライアントは個々のカット層アクティベーション(スマッシュされたデータ)をサーバにリリースし、そのレスポンス(推論とバックの伝搬の両方)を待つ必要があります。
本研究では, クライアントがオンライン知識蒸留を通じて, 対照的な損失を生かして協調する, プライバシ保護機械学習の新しいアプローチを提案する。
論文 参考訳(メタデータ) (2022-11-20T10:49:22Z) - FedDC: Federated Learning with Non-IID Data via Local Drift Decoupling
and Correction [48.85303253333453]
フェデレートラーニング(FL)は、複数のクライアントがプライベートデータを共有せずに、高性能なグローバルモデルを集合的にトレーニングすることを可能にする。
局所的ドリフトデカップリングと補正(FedDC)を用いた新しいフェデレーション学習アルゴリズムを提案する。
私たちのFedDCでは、ローカルモデルパラメータとグローバルモデルパラメータのギャップを追跡するために、各クライアントが補助的なローカルドリフト変数を使用するような、ローカルトレーニングフェーズにおける軽量な修正のみを導入しています。
実験結果と解析結果から,FedDCは様々な画像分類タスクにおいて,収差の迅速化と性能の向上を図っている。
論文 参考訳(メタデータ) (2022-03-22T14:06:26Z) - Acceleration of Federated Learning with Alleviated Forgetting in Local
Training [61.231021417674235]
フェデレートラーニング(FL)は、プライバシを保護しながら機械学習モデルの分散最適化を可能にする。
我々は,FedRegを提案する。FedRegは,局所的な訓練段階において,知識を忘れることなくFLを加速するアルゴリズムである。
我々の実験は、FedRegはFLの収束率を著しく改善するだけでなく、特にニューラルネットワークアーキテクチャが深い場合にも改善することを示した。
論文 参考訳(メタデータ) (2022-03-05T02:31:32Z) - Byzantine-robust Federated Learning through Spatial-temporal Analysis of
Local Model Updates [6.758334200305236]
フェデレートラーニング(FL)は、複数の分散クライアント(モバイルデバイスなど)が、クライアントにローカルにトレーニングデータを保持しながら、協調的に集中的なモデルをトレーニングすることを可能にする。
本稿では,これらの障害と攻撃を空間的・時間的観点から緩和することを提案する。
具体的には、パラメータ空間におけるそれらの幾何学的性質を活用することにより、不正な更新を検出し、排除するためにクラスタリングに基づく手法を用いる。
論文 参考訳(メタデータ) (2021-07-03T18:48:11Z) - Low-Latency Federated Learning over Wireless Channels with Differential
Privacy [142.5983499872664]
フェデレートラーニング(FL)では、モデルトレーニングはクライアントに分散し、ローカルモデルは中央サーバによって集約される。
本稿では,各クライアントの差分プライバシ(DP)要件だけでなく,全体としてのトレーニング性能に制約された無線チャネル上でのFLトレーニング遅延を最小限に抑えることを目的とする。
論文 参考訳(メタデータ) (2021-06-20T13:51:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。