Analysis of Latent-Space Motion for Collaborative Intelligence
- URL: http://arxiv.org/abs/2102.04018v1
- Date: Mon, 8 Feb 2021 06:22:07 GMT
- Title: Analysis of Latent-Space Motion for Collaborative Intelligence
- Authors: Mateen Ulhaq, Ivan V. Baji\'c
- Abstract summary: We show that the motion present in each channel of a feature tensor is approximately equal to the scaled version of the input motion.
Results will be useful in collaborative intelligence applications.
- Score: 26.24508656138528
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: When the input to a deep neural network (DNN) is a video signal, a sequence
of feature tensors is produced at the intermediate layers of the model. If
neighboring frames of the input video are related through motion, a natural
question is, "what is the relationship between the corresponding feature
tensors?" By analyzing the effect of common DNN operations on optical flow, we
show that the motion present in each channel of a feature tensor is
approximately equal to the scaled version of the input motion. The analysis is
validated through experiments utilizing common motion models. %These results
will be useful in collaborative intelligence applications where sequences of
feature tensors need to be compressed or further analyzed.
Related papers
- Equivariant Graph Neural Operator for Modeling 3D Dynamics [148.98826858078556]
We propose Equivariant Graph Neural Operator (EGNO) to directly models dynamics as trajectories instead of just next-step prediction.
EGNO explicitly learns the temporal evolution of 3D dynamics where we formulate the dynamics as a function over time and learn neural operators to approximate it.
Comprehensive experiments in multiple domains, including particle simulations, human motion capture, and molecular dynamics, demonstrate the significantly superior performance of EGNO against existing methods.
arXiv Detail & Related papers (2024-01-19T21:50:32Z) - Dynamic Tensor Decomposition via Neural Diffusion-Reaction Processes [24.723536390322582]
tensor decomposition is an important tool for multiway data analysis.
We propose Dynamic EMbedIngs fOr dynamic algorithm dEcomposition (DEMOTE)
We show the advantage of our approach in both simulation study and real-world applications.
arXiv Detail & Related papers (2023-10-30T15:49:45Z) - Momentum Diminishes the Effect of Spectral Bias in Physics-Informed
Neural Networks [72.09574528342732]
Physics-informed neural network (PINN) algorithms have shown promising results in solving a wide range of problems involving partial differential equations (PDEs)
They often fail to converge to desirable solutions when the target function contains high-frequency features, due to a phenomenon known as spectral bias.
In the present work, we exploit neural tangent kernels (NTKs) to investigate the training dynamics of PINNs evolving under gradient descent with momentum (SGDM)
arXiv Detail & Related papers (2022-06-29T19:03:10Z) - Relational Self-Attention: What's Missing in Attention for Video
Understanding [52.38780998425556]
We introduce a relational feature transform, dubbed the relational self-attention (RSA)
Our experiments and ablation studies show that the RSA network substantially outperforms convolution and self-attention counterparts.
arXiv Detail & Related papers (2021-11-02T15:36:11Z) - EAN: Event Adaptive Network for Enhanced Action Recognition [66.81780707955852]
We propose a unified action recognition framework to investigate the dynamic nature of video content.
First, when extracting local cues, we generate the spatial-temporal kernels of dynamic-scale to adaptively fit the diverse events.
Second, to accurately aggregate these cues into a global video representation, we propose to mine the interactions only among a few selected foreground objects by a Transformer.
arXiv Detail & Related papers (2021-07-22T15:57:18Z) - Tensor Representations for Action Recognition [54.710267354274194]
Human actions in sequences are characterized by the complex interplay between spatial features and their temporal dynamics.
We propose novel tensor representations for capturing higher-order relationships between visual features for the task of action recognition.
We use higher-order tensors and so-called Eigenvalue Power Normalization (NEP) which have been long speculated to perform spectral detection of higher-order occurrences.
arXiv Detail & Related papers (2020-12-28T17:27:18Z) - On the eigenvector bias of Fourier feature networks: From regression to
solving multi-scale PDEs with physics-informed neural networks [0.0]
We show that neural networks (PINNs) struggle in cases where the target functions to be approximated exhibit high-frequency or multi-scale features.
We construct novel architectures that employ multi-scale random observational features and justify how such coordinate embedding layers can lead to robust and accurate PINN models.
arXiv Detail & Related papers (2020-12-18T04:19:30Z) - MotionSqueeze: Neural Motion Feature Learning for Video Understanding [46.82376603090792]
Motion plays a crucial role in understanding videos and most state-of-the-art neural models for video classification incorporate motion information.
In this work, we replace external and heavy computation of optical flows with internal and light-weight learning of motion features.
We demonstrate that the proposed method provides a significant gain on four standard benchmarks for action recognition with only a small amount of additional cost.
arXiv Detail & Related papers (2020-07-20T08:30:14Z) - Understanding Recurrent Neural Networks Using Nonequilibrium Response
Theory [5.33024001730262]
Recurrent neural networks (RNNs) are brain-inspired models widely used in machine learning for analyzing sequential data.
We show how RNNs process input signals using the response theory from nonequilibrium statistical mechanics.
arXiv Detail & Related papers (2020-06-19T10:09:09Z) - Convolutional Tensor-Train LSTM for Spatio-temporal Learning [116.24172387469994]
We propose a higher-order LSTM model that can efficiently learn long-term correlations in the video sequence.
This is accomplished through a novel tensor train module that performs prediction by combining convolutional features across time.
Our results achieve state-of-the-art performance-art in a wide range of applications and datasets.
arXiv Detail & Related papers (2020-02-21T05:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.