論文の概要: How True is GPT-2? An Empirical Analysis of Intersectional Occupational
Biases
- arxiv url: http://arxiv.org/abs/2102.04130v1
- Date: Mon, 8 Feb 2021 11:10:27 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-10 04:55:42.560723
- Title: How True is GPT-2? An Empirical Analysis of Intersectional Occupational
Biases
- Title(参考訳): GPT-2は本当ですか?
間欠的職業的ビアーゼの実証解析
- Authors: Hannah Kirk, Yennie Jun, Haider Iqbal, Elias Benussi, Filippo Volpin,
Frederic A. Dreyer, Aleksandar Shtedritski, Yuki M. Asano
- Abstract要約: 下流のアプリケーションは、自然言語モデルに含まれるバイアスを継承するリスクがある。
一般的な生成言語モデルであるGPT-2の作業バイアスを分析した。
特定の仕事について、GPT-2は米国におけるジェンダーと民族の社会的偏見を反映しており、場合によってはジェンダー・パリティの傾向を反映している。
- 参考スコア(独自算出の注目度): 50.591267188664666
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The capabilities of natural language models trained on large-scale data have
increased immensely over the past few years. Downstream applications are at
risk of inheriting biases contained in these models, with potential negative
consequences especially for marginalized groups. In this paper, we analyze the
occupational biases of a popular generative language model, GPT-2, intersecting
gender with five protected categories: religion, sexuality, ethnicity,
political affiliation, and name origin. Using a novel data collection pipeline
we collect 396k sentence completions of GPT-2 and find: (i) The
machine-predicted jobs are less diverse and more stereotypical for women than
for men, especially for intersections; (ii) Fitting 262 logistic models shows
intersectional interactions to be highly relevant for occupational
associations; (iii) For a given job, GPT-2 reflects the societal skew of gender
and ethnicity in the US, and in some cases, pulls the distribution towards
gender parity, raising the normative question of what language models _should_
learn.
- Abstract(参考訳): 大規模なデータで訓練された自然言語モデルの能力は、ここ数年で大幅に増加しました。
下流のアプリケーションはこれらのモデルに含まれるバイアスを継承する危険性があり、特に辺縁化群に負の結果をもたらす可能性がある。
本論文では,宗教,性,民族,政治的所属,名称の5つのカテゴリーで性別を交差させ,人気のジェネレーション言語モデルであるGPT-2の職業バイアスを分析した。
Using a novel data collection pipeline we collect 396k sentence completions of GPT-2 and find: (i) The machine-predicted jobs are less diverse and more stereotypical for women than for men, especially for intersections; (ii) Fitting 262 logistic models shows intersectional interactions to be highly relevant for occupational associations; (iii) For a given job, GPT-2 reflects the societal skew of gender and ethnicity in the US, and in some cases, pulls the distribution towards gender parity, raising the normative question of what language models _should_ learn.
関連論文リスト
- Evaluating Gender Bias in Large Language Models [0.8636148452563583]
本研究では,大規模言語モデル (LLMs) が職業文脈における代名詞選択における性別バイアスの程度について検討した。
対象とする職業は、男性に有意な存在感を持つものから女性に有意な集中力を持つものまで幅広い。
その結果, モデルの代名詞選択と, 労働力データに存在する性別分布との間には, 正の相関関係が認められた。
論文 参考訳(メタデータ) (2024-11-14T22:23:13Z) - The Root Shapes the Fruit: On the Persistence of Gender-Exclusive Harms in Aligned Language Models [58.130894823145205]
我々はトランスジェンダー、ノンバイナリ、その他のジェンダー・ディバースのアイデンティティを中心とし、アライメント手順が既存のジェンダー・ディバースバイアスとどのように相互作用するかを検討する。
以上の結果から,DPO対応モデルは特に教師付き微調整に敏感であることが示唆された。
DPOとより広範なアライメントプラクティスに合わせたレコメンデーションで締めくくります。
論文 参考訳(メタデータ) (2024-11-06T06:50:50Z) - GenderBias-\emph{VL}: Benchmarking Gender Bias in Vision Language Models via Counterfactual Probing [72.0343083866144]
本稿では,GenderBias-emphVLベンチマークを用いて,大規模視覚言語モデルにおける職業関連性バイアスの評価を行う。
ベンチマークを用いて15のオープンソースLVLMと最先端の商用APIを広範囲に評価した。
既存のLVLMでは男女差が広くみられた。
論文 参考訳(メタデータ) (2024-06-30T05:55:15Z) - Hire Me or Not? Examining Language Model's Behavior with Occupation Attributes [7.718858707298602]
大規模言語モデル(LLM)は、採用やレコメンデーションシステムなど、プロダクションパイプラインに広く統合されている。
本稿では、職業意思決定の文脈において、ジェンダーステレオタイプに関するLCMの行動について検討する。
論文 参考訳(メタデータ) (2024-05-06T18:09:32Z) - Protected group bias and stereotypes in Large Language Models [2.1122940074160357]
本稿では,倫理と公正の領域におけるLarge Language Models(LLM)の振る舞いについて考察する。
マイノリティ化されたグループに偏見はありますが、特に性別やセクシュアリティの領域では、西洋の偏見も見られます。
論文 参考訳(メタデータ) (2024-03-21T00:21:38Z) - The Male CEO and the Female Assistant: Evaluation and Mitigation of Gender Biases in Text-To-Image Generation of Dual Subjects [58.27353205269664]
本稿では,Paired Stereotype Test (PST) フレームワークを提案する。
PSTクエリT2Iモデルは、男性ステレオタイプと女性ステレオタイプに割り当てられた2つの個人を描写する。
PSTを用いて、ジェンダーバイアスの2つの側面、つまり、ジェンダーの職業におけるよく知られたバイアスと、組織力におけるバイアスという新しい側面を評価する。
論文 参考訳(メタデータ) (2024-02-16T21:32:27Z) - Multilingual Text-to-Image Generation Magnifies Gender Stereotypes and Prompt Engineering May Not Help You [64.74707085021858]
多言語モデルは、モノリンガルモデルと同様に、有意な性別バイアスに悩まされていることを示す。
多言語モデルにおけるジェンダーバイアスの研究を促進するための新しいベンチマークMAGBIGを提案する。
以上の結果から,モデルが強い性バイアスを示すだけでなく,言語によって異なる行動を示すことが明らかとなった。
論文 参考訳(メタデータ) (2024-01-29T12:02:28Z) - Evaluating Large Language Models through Gender and Racial Stereotypes [0.0]
質比較研究を行い、性別と人種の2種類の偏見を前提として、言語モデルを評価する枠組みを確立する。
より古いモデルに比べて、新しいモデルでは男女の偏見が大幅に減少したが、人種の偏見は依然として存在する。
論文 参考訳(メタデータ) (2023-11-24T18:41:16Z) - Towards Understanding Gender-Seniority Compound Bias in Natural Language
Generation [64.65911758042914]
本研究では,事前学習したニューラルジェネレーションモデルにおける性別バイアスの程度に,高齢者がどのような影響を及ぼすかを検討する。
以上の結果から, GPT-2は, 両領域において, 女性を中年, 男性を中年として考えることにより, 偏見を増幅することが示された。
以上の結果から, GPT-2を用いて構築したNLPアプリケーションは, プロの能力において女性に害を与える可能性が示唆された。
論文 参考訳(メタデータ) (2022-05-19T20:05:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。