Deep Learning Models May Spuriously Classify Covid-19 from X-ray Images
Based on Confounders
- URL: http://arxiv.org/abs/2102.04300v1
- Date: Fri, 8 Jan 2021 21:33:06 GMT
- Title: Deep Learning Models May Spuriously Classify Covid-19 from X-ray Images
Based on Confounders
- Authors: Kaoutar Ben Ahmed, Lawrence O. Hall, Dmitry B. Goldgof, Gregory M.
Goldgof, Rahul Paul
- Abstract summary: Recent studies claim it may be possible to build highly accurate models, using deep learning, to detect Covid-19 from chest X-ray images.
This paper explores the robustness and generalization ability of convolutional neural network models in diagnosing Covid-19 disease from frontal-view.
- Score: 1.8321821509675509
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Identifying who is infected with the Covid-19 virus is critical for
controlling its spread. X-ray machines are widely available worldwide and can
quickly provide images that can be used for diagnosis. A number of recent
studies claim it may be possible to build highly accurate models, using deep
learning, to detect Covid-19 from chest X-ray images. This paper explores the
robustness and generalization ability of convolutional neural network models in
diagnosing Covid-19 disease from frontal-view (AP/PA), raw chest X-ray images
that were lung field cropped. Some concerning observations are made about high
performing models that have learned to rely on confounding features related to
the data source, rather than the patient's lung pathology, when differentiating
between Covid-19 positive and negative labels. Specifically, these models
likely made diagnoses based on confounding factors such as patient age or image
processing artifacts, rather than medically relevant information.
Related papers
- Detection of COVID19 in Chest X-Ray Images Using Transfer Learning [0.0]
This paper investigates the concept of transfer learning using two of the most well-known VGGNet architectures, namely VGG-16 and VGG-19.
We generated two different datasets to evaluate the performance of the proposed system for the identification of positive Covid-19 instances in a multiclass and binary classification problems.
arXiv Detail & Related papers (2023-04-09T05:02:04Z) - Optimising Chest X-Rays for Image Analysis by Identifying and Removing
Confounding Factors [49.005337470305584]
During the COVID-19 pandemic, the sheer volume of imaging performed in an emergency setting for COVID-19 diagnosis has resulted in a wide variability of clinical CXR acquisitions.
The variable quality of clinically-acquired CXRs within publicly available datasets could have a profound effect on algorithm performance.
We propose a simple and effective step-wise approach to pre-processing a COVID-19 chest X-ray dataset to remove undesired biases.
arXiv Detail & Related papers (2022-08-22T13:57:04Z) - The pitfalls of using open data to develop deep learning solutions for
COVID-19 detection in chest X-rays [64.02097860085202]
Deep learning models have been developed to identify COVID-19 from chest X-rays.
Results have been exceptional when training and testing on open-source data.
Data analysis and model evaluations show that the popular open-source dataset COVIDx is not representative of the real clinical problem.
arXiv Detail & Related papers (2021-09-14T10:59:11Z) - COVID-19 Detection from Chest X-ray Images using Imprinted Weights
Approach [67.05664774727208]
Chest radiography is an alternative screening method for the COVID-19.
Computer-aided diagnosis (CAD) has proven to be a viable solution at low cost and with fast speed.
To address this challenge, we propose the use of a low-shot learning approach named imprinted weights.
arXiv Detail & Related papers (2021-05-04T19:01:40Z) - In-Line Image Transformations for Imbalanced, Multiclass Computer Vision
Classification of Lung Chest X-Rays [91.3755431537592]
This study aims to leverage a body of literature in order to apply image transformations that would serve to balance the lack of COVID-19 LCXR data.
Deep learning techniques such as convolutional neural networks (CNNs) are able to select features that distinguish between healthy and disease states.
This study utilizes a simple CNN architecture for high-performance multiclass LCXR classification at 94 percent accuracy.
arXiv Detail & Related papers (2021-04-06T02:01:43Z) - A comparison of deep machine learning algorithms in COVID-19 disease
diagnosis [4.636229382827605]
The aim of the work is to use deep neural network models for solving the problem of image recognition.
In this work, x-ray images are used for the diagnosis of suspected COVID-19 patients using modern machine learning techniques.
arXiv Detail & Related papers (2020-08-25T10:51:54Z) - Study of Different Deep Learning Approach with Explainable AI for
Screening Patients with COVID-19 Symptoms: Using CT Scan and Chest X-ray
Image Dataset [1.4680035572775532]
The outbreak of COVID-19 disease caused more than 100,000 deaths so far in the USA alone.
It is becoming laborious to conduct the tests with the available testing kits due to the growing number of patients.
This study aims to develop a deep learning-based model that can detect COVID-19 patients with better accuracy both on CT scan and chest X-ray image dataset.
arXiv Detail & Related papers (2020-07-24T13:51:58Z) - Predicting COVID-19 Pneumonia Severity on Chest X-ray with Deep Learning [57.00601760750389]
We present a severity score prediction model for COVID-19 pneumonia for frontal chest X-ray images.
Such a tool can gauge severity of COVID-19 lung infections that can be used for escalation or de-escalation of care.
arXiv Detail & Related papers (2020-05-24T23:13:16Z) - Diagnosis of Coronavirus Disease 2019 (COVID-19) with Structured Latent
Multi-View Representation Learning [48.05232274463484]
Recently, the outbreak of Coronavirus Disease 2019 (COVID-19) has spread rapidly across the world.
Due to the large number of affected patients and heavy labor for doctors, computer-aided diagnosis with machine learning algorithm is urgently needed.
In this study, we propose to conduct the diagnosis of COVID-19 with a series of features extracted from CT images.
arXiv Detail & Related papers (2020-05-06T15:19:15Z) - Deep-COVID: Predicting COVID-19 From Chest X-Ray Images Using Deep
Transfer Learning [5.174558376705871]
The COVID-19 pandemic is causing a major outbreak in more than 150 countries around the world.
One of the crucial step in fighting COVID-19 is the ability to detect the infected patients early enough.
We study the application of deep learning models to detect COVID-19 patients from their chest radiography images.
arXiv Detail & Related papers (2020-04-20T15:09:14Z) - Finding Covid-19 from Chest X-rays using Deep Learning on a Small
Dataset [0.8307419633891249]
This paper explores how useful chest X-ray images can be in diagnosing COVID-19 disease.
We have obtained 122 chest X-rays of COVID-19 and over 4,000 chest X-rays of viral and bacterial pneumonia.
arXiv Detail & Related papers (2020-04-05T00:58:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.