Optimising Chest X-Rays for Image Analysis by Identifying and Removing
Confounding Factors
- URL: http://arxiv.org/abs/2208.10320v1
- Date: Mon, 22 Aug 2022 13:57:04 GMT
- Title: Optimising Chest X-Rays for Image Analysis by Identifying and Removing
Confounding Factors
- Authors: Shahab Aslani, Watjana Lilaonitkul, Vaishnavi Gnanananthan, Divya Raj,
Bojidar Rangelov, Alexandra L Young, Yipeng Hu, Paul Taylor, Daniel C
Alexander, Joseph Jacob
- Abstract summary: During the COVID-19 pandemic, the sheer volume of imaging performed in an emergency setting for COVID-19 diagnosis has resulted in a wide variability of clinical CXR acquisitions.
The variable quality of clinically-acquired CXRs within publicly available datasets could have a profound effect on algorithm performance.
We propose a simple and effective step-wise approach to pre-processing a COVID-19 chest X-ray dataset to remove undesired biases.
- Score: 49.005337470305584
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: During the COVID-19 pandemic, the sheer volume of imaging performed in an
emergency setting for COVID-19 diagnosis has resulted in a wide variability of
clinical CXR acquisitions. This variation is seen in the CXR projections used,
image annotations added and in the inspiratory effort and degree of rotation of
clinical images. The image analysis community has attempted to ease the burden
on overstretched radiology departments during the pandemic by developing
automated COVID-19 diagnostic algorithms, the input for which has been CXR
imaging. Large publicly available CXR datasets have been leveraged to improve
deep learning algorithms for COVID-19 diagnosis. Yet the variable quality of
clinically-acquired CXRs within publicly available datasets could have a
profound effect on algorithm performance. COVID-19 diagnosis may be inferred by
an algorithm from non-anatomical features on an image such as image labels.
These imaging shortcuts may be dataset-specific and limit the generalisability
of AI systems. Understanding and correcting key potential biases in CXR images
is therefore an essential first step prior to CXR image analysis. In this
study, we propose a simple and effective step-wise approach to pre-processing a
COVID-19 chest X-ray dataset to remove undesired biases. We perform ablation
studies to show the impact of each individual step. The results suggest that
using our proposed pipeline could increase accuracy of the baseline COVID-19
detection algorithm by up to 13%.
Related papers
- COVIDx CXR-4: An Expanded Multi-Institutional Open-Source Benchmark
Dataset for Chest X-ray Image-Based Computer-Aided COVID-19 Diagnostics [79.90346960083775]
We introduce COVIDx CXR-4, an expanded multi-institutional open-source benchmark dataset for chest X-ray image-based computer-aided COVID-19 diagnostics.
COVIDx CXR-4 expands significantly on the previous COVIDx CXR-3 dataset by increasing the total patient cohort size by greater than 2.66 times.
We provide extensive analysis on the diversity of the patient demographic, imaging metadata, and disease distributions to highlight potential dataset biases.
arXiv Detail & Related papers (2023-11-29T14:40:31Z) - Multi-Scale Feature Fusion using Parallel-Attention Block for COVID-19
Chest X-ray Diagnosis [2.15242029196761]
Under the global COVID-19 crisis, accurate diagnosis of COVID-19 from Chest X-ray (CXR) images is critical.
We propose a novel multi-feature fusion network using parallel attention blocks to fuse the original CXR images and local-phase feature-enhanced CXR images at multi-scales.
arXiv Detail & Related papers (2023-04-25T16:56:12Z) - COVIDx CXR-3: A Large-Scale, Open-Source Benchmark Dataset of Chest
X-ray Images for Computer-Aided COVID-19 Diagnostics [69.55060769611916]
The use of chest X-ray (CXR) imaging as a complementary screening strategy to RT-PCR testing is increasing.
Many visual perception models have been proposed for COVID-19 screening based on CXR imaging.
We introduce COVIDx CXR-3, a large-scale benchmark dataset of CXR images for supporting COVID-19 computer vision research.
arXiv Detail & Related papers (2022-06-08T04:39:44Z) - Calibrated Bagging Deep Learning for Image Semantic Segmentation: A Case
Study on COVID-19 Chest X-ray Image [3.135883872525168]
Imaging tests such as chest X-ray (CXR) and computed tomography (CT) can provide useful information to clinical staff.
Deep learning has been applied to perform COVID-19 infection region segmentation and disease classification.
We propose a novel ensemble deep learning model through integrating bagging deep learning and model calibration.
arXiv Detail & Related papers (2022-05-27T20:06:45Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - Deep Metric Learning-based Image Retrieval System for Chest Radiograph
and its Clinical Applications in COVID-19 [12.584626589565522]
Chest radiograph (CXR) has been playing a crucial role in COVID-19 patient triaging, diagnosing and monitoring.
Considering the mixed and unspecific signals in CXR, an image retrieval model of CXR that provides both similar images and associated clinical information can be more clinically meaningful.
In this work we develop a novel CXR image retrieval model based on deep metric learning.
arXiv Detail & Related papers (2020-11-26T03:16:48Z) - Fused Deep Convolutional Neural Network for Precision Diagnosis of
COVID-19 Using Chest X-Ray Images [0.0]
We propose a computer-aided diagnosis (CAD) to accurately classify chest X-ray scans of COVID-19 and normal subjects by fine-tuning several neural networks.
Using k-fold cross-validation and a bagging ensemble, we achieve an accuracy of 99.7% and a sensitivity of 100%.
arXiv Detail & Related papers (2020-09-15T02:27:20Z) - Deep Learning COVID-19 Features on CXR using Limited Training Data Sets [40.45289250518209]
We propose a patch-based convolutional neural network approach with a relatively small number of trainable parameters for COVID-19 diagnosis.
Experimental results show that our method achieves state-of-the-art performance and provides clinically interpretable saliency maps.
arXiv Detail & Related papers (2020-04-13T03:44:42Z) - Residual Attention U-Net for Automated Multi-Class Segmentation of
COVID-19 Chest CT Images [46.844349956057776]
coronavirus disease 2019 (COVID-19) has been spreading rapidly around the world and caused significant impact on the public health and economy.
There is still lack of studies on effectively quantifying the lung infection caused by COVID-19.
We propose a novel deep learning algorithm for automated segmentation of multiple COVID-19 infection regions.
arXiv Detail & Related papers (2020-04-12T16:24:59Z) - COVID-Net: A Tailored Deep Convolutional Neural Network Design for
Detection of COVID-19 Cases from Chest X-Ray Images [93.0013343535411]
We introduce COVID-Net, a deep convolutional neural network design tailored for the detection of COVID-19 cases from chest X-ray (CXR) images.
To the best of the authors' knowledge, COVID-Net is one of the first open source network designs for COVID-19 detection from CXR images.
We also introduce COVIDx, an open access benchmark dataset that we generated comprising of 13,975 CXR images across 13,870 patient patient cases.
arXiv Detail & Related papers (2020-03-22T12:26:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.