論文の概要: TransUNet: Transformers Make Strong Encoders for Medical Image
Segmentation
- arxiv url: http://arxiv.org/abs/2102.04306v1
- Date: Mon, 8 Feb 2021 16:10:50 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-11 09:53:01.556796
- Title: TransUNet: Transformers Make Strong Encoders for Medical Image
Segmentation
- Title(参考訳): TransUNet:トランスフォーマーは医療画像セグメンテーションのための強力なエンコーダを作る
- Authors: Jieneng Chen, Yongyi Lu, Qihang Yu, Xiangde Luo, Ehsan Adeli, Yan
Wang, Le Lu, Alan L. Yuille, Yuyin Zhou
- Abstract要約: 医用画像のセグメンテーションは医療システムの開発に必須の前提条件である。
様々な医療画像セグメンテーションタスクにおいて、U-Netとして知られるu字型アーキテクチャがデファクトスタンダードとなっている。
医用画像セグメンテーションの強力な代替手段として,トランスフォーマーとU-Netの両方を有効活用するTransUNetを提案する。
- 参考スコア(独自算出の注目度): 78.01570371790669
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Medical image segmentation is an essential prerequisite for developing
healthcare systems, especially for disease diagnosis and treatment planning. On
various medical image segmentation tasks, the u-shaped architecture, also known
as U-Net, has become the de-facto standard and achieved tremendous success.
However, due to the intrinsic locality of convolution operations, U-Net
generally demonstrates limitations in explicitly modeling long-range
dependency. Transformers, designed for sequence-to-sequence prediction, have
emerged as alternative architectures with innate global self-attention
mechanisms, but can result in limited localization abilities due to
insufficient low-level details. In this paper, we propose TransUNet, which
merits both Transformers and U-Net, as a strong alternative for medical image
segmentation. On one hand, the Transformer encodes tokenized image patches from
a convolution neural network (CNN) feature map as the input sequence for
extracting global contexts. On the other hand, the decoder upsamples the
encoded features which are then combined with the high-resolution CNN feature
maps to enable precise localization.
We argue that Transformers can serve as strong encoders for medical image
segmentation tasks, with the combination of U-Net to enhance finer details by
recovering localized spatial information. TransUNet achieves superior
performances to various competing methods on different medical applications
including multi-organ segmentation and cardiac segmentation. Code and models
are available at https://github.com/Beckschen/TransUNet.
- Abstract(参考訳): 医用画像のセグメンテーションは医療システム、特に疾患の診断と治療計画に必須の前提条件である。
さまざまな医療画像分割タスクでは、U-Netとも呼ばれるu字型のアーキテクチャがデファクトスタンダードとなり、大きな成功を収めました。
しかし、畳み込み操作の本質的な局所性のために、U-Netは一般に長距離依存を明示的にモデリングする制限を示す。
シーケンシャル・トゥ・シーケンス予測のために設計されたトランスフォーマーは、生来のグローバル・セルフ・アテンション機構を持つ代替アーキテクチャとして登場したが、低レベルの詳細が不十分なためにローカライズ能力が限られている。
本稿では,医用画像セグメンテーションの強力な代替手段として,トランスフォーマーとU-Netを両立させたTransUNetを提案する。
一方、トランスフォーマは、グローバルコンテキストを抽出する入力シーケンスとして畳み込みニューラルネットワーク(cnn)特徴マップからトークン化された画像パッチを符号化する。
一方、デコーダは符号化された特徴をサンプリングし、高分解能のcnn特徴マップと組み合わせて正確な局在化を可能にする。
トランスフォーマーは、U-Netの組み合わせにより、局所化された空間情報を回復することで細かい詳細を強化することで、医療画像セグメンテーションタスクの強力なエンコーダとして役立つと論じています。
TransUNetは、マルチオーガンセグメンテーションや心臓セグメンテーションなど、さまざまな医療用途におけるさまざまな競合方法に対する優れたパフォーマンスを実現します。
コードとモデルはhttps://github.com/beckschen/transunetで入手できる。
関連論文リスト
- ParaTransCNN: Parallelized TransCNN Encoder for Medical Image
Segmentation [7.955518153976858]
本稿では,畳み込みニューラルネットワークとトランスフォーマーアーキテクチャを組み合わせた2次元特徴抽出手法を提案する。
特に小臓器では, セグメンテーションの精度が向上した。
論文 参考訳(メタデータ) (2024-01-27T05:58:36Z) - 3D TransUNet: Advancing Medical Image Segmentation through Vision
Transformers [40.21263511313524]
医療画像のセグメンテーションは、疾患診断と治療計画のための医療システムの発展に重要な役割を担っている。
U-Netとして知られるU字型アーキテクチャは、様々な医療画像セグメンテーションタスクで高い成功を収めている。
これらの制限に対処するため、研究者たちはトランスフォーマー(Transformer)に転換した。
論文 参考訳(メタデータ) (2023-10-11T18:07:19Z) - Dilated-UNet: A Fast and Accurate Medical Image Segmentation Approach
using a Dilated Transformer and U-Net Architecture [0.6445605125467572]
本稿では,Dilated-UNetについて紹介する。Dilated-UNetはDilated TransformerブロックとU-Netアーキテクチャを組み合わせることで,高精度かつ高速な医用画像セグメンテーションを実現する。
実験の結果,Dilated-UNetはいくつかの挑戦的な医用画像セグメンテーションデータセットにおいて,他のモデルよりも優れていた。
論文 参考訳(メタデータ) (2023-04-22T17:20:13Z) - TransNorm: Transformer Provides a Strong Spatial Normalization Mechanism
for a Deep Segmentation Model [4.320393382724066]
畳み込みニューラルネットワーク(CNN)は、医療画像処理時代の主流技術である。
本稿では,Transformerモジュールをエンコーダとスキップ接続の両方に統合する,新しいディープセグメンテーションフレームワークであるTrans-Normを提案する。
論文 参考訳(メタデータ) (2022-07-27T09:54:10Z) - Focused Decoding Enables 3D Anatomical Detection by Transformers [64.36530874341666]
集束デコーダと呼ばれる3次元解剖学的構造検出のための新しい検出変換器を提案する。
Focused Decoderは、解剖学的領域のアトラスからの情報を活用して、クエリアンカーを同時にデプロイし、クロスアテンションの視野を制限する。
提案手法を利用可能な2つのCTデータセットに対して評価し、フォーカスドデコーダが強力な検出結果を提供するだけでなく、大量の注釈付きデータの必要性を軽減し、注意重みによる結果の例外的で直感的な説明性を示すことを示した。
論文 参考訳(メタデータ) (2022-07-21T22:17:21Z) - MISSU: 3D Medical Image Segmentation via Self-distilling TransUNet [55.16833099336073]
医用画像セグメンテーションのためのトランスフォーマーベースUNetを提案する。
グローバルな意味情報と局所的な空間的詳細特徴を同時に学習する。
MISSUは従来の最先端手法よりも優れた性能を発揮する。
論文 参考訳(メタデータ) (2022-06-02T07:38:53Z) - Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation [63.46694853953092]
Swin-Unetは、医用画像セグメンテーション用のUnetライクなトランスフォーマーである。
トークン化されたイメージパッチは、TransformerベースのU字型デコーダデコーダアーキテクチャに供給される。
論文 参考訳(メタデータ) (2021-05-12T09:30:26Z) - UNETR: Transformers for 3D Medical Image Segmentation [8.59571749685388]
UNEt TRansformers(UNETR)と呼ばれる新しいアーキテクチャを導入し、純粋なトランスフォーマーをエンコーダとして入力ボリュームのシーケンス表現を学習します。
提案モデルの性能を様々なイメージング手法で広く検証しています。
論文 参考訳(メタデータ) (2021-03-18T20:17:15Z) - CoTr: Efficiently Bridging CNN and Transformer for 3D Medical Image
Segmentation [95.51455777713092]
畳み込みニューラルネットワーク(CNN)は、現代の3D医療画像セグメンテーションのデファクトスタンダードとなっている。
本稿では,bf畳み込みニューラルネットワークとbfトランスbf(cotr)を効率良く橋渡しし,正確な3次元医用画像分割を実現する新しい枠組みを提案する。
論文 参考訳(メタデータ) (2021-03-04T13:34:22Z) - Medical Transformer: Gated Axial-Attention for Medical Image
Segmentation [73.98974074534497]
医用画像分割タスクにおけるトランスフォーマティブネットワークアーキテクチャの利用可能性について検討する。
セルフアテンションモジュールに追加の制御機構を導入することで,既存のアーキテクチャを拡張するGated Axial-Attentionモデルを提案する。
医療画像上で効果的にモデルを訓練するために,さらにパフォーマンスを向上させる局所的グローバルトレーニング戦略 (logo) を提案する。
論文 参考訳(メタデータ) (2021-02-21T18:35:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。