Improved Brain Age Estimation with Slice-based Set Networks
- URL: http://arxiv.org/abs/2102.04438v2
- Date: Tue, 9 Feb 2021 16:15:45 GMT
- Title: Improved Brain Age Estimation with Slice-based Set Networks
- Authors: Umang Gupta, Pradeep K. Lam, Greg Ver Steeg, Paul M. Thompson
- Abstract summary: We propose a new architecture for BrainAGE prediction.
The proposed architecture works by encoding each 2D slice in an MRI with a deep 2D-CNN model.
Next, it combines the information from these 2D-slice encodings using set networks or permutation invariant layers.
Experiments on the BrainAGE prediction problem, using the UK Biobank dataset, showed that the model with the permutation invariant layers trains faster and provides better predictions compared to other state-of-the-art approaches.
- Score: 18.272915375351914
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep Learning for neuroimaging data is a promising but challenging direction.
The high dimensionality of 3D MRI scans makes this endeavor compute and
data-intensive. Most conventional 3D neuroimaging methods use 3D-CNN-based
architectures with a large number of parameters and require more time and data
to train. Recently, 2D-slice-based models have received increasing attention as
they have fewer parameters and may require fewer samples to achieve comparable
performance. In this paper, we propose a new architecture for BrainAGE
prediction. The proposed architecture works by encoding each 2D slice in an MRI
with a deep 2D-CNN model. Next, it combines the information from these 2D-slice
encodings using set networks or permutation invariant layers. Experiments on
the BrainAGE prediction problem, using the UK Biobank dataset, showed that the
model with the permutation invariant layers trains faster and provides better
predictions compared to other state-of-the-art approaches.
Related papers
- Efficient Slice Anomaly Detection Network for 3D Brain MRI Volume [2.3633885460047765]
Current anomaly detection methods excel with benchmark industrial data but struggle with medical data due to varying definitions of 'normal' and 'abnormal'
We propose a framework called Simple Slice-based Network (SimpleSliceNet), which utilizes a model pre-trained on ImageNet and fine-tuned on a separate MRI dataset as a 2D slice feature extractor to reduce computational cost.
arXiv Detail & Related papers (2024-08-28T17:20:56Z) - Spatiotemporal Modeling Encounters 3D Medical Image Analysis:
Slice-Shift UNet with Multi-View Fusion [0.0]
We propose a new 2D-based model dubbed Slice SHift UNet which encodes three-dimensional features at 2D CNN's complexity.
More precisely multi-view features are collaboratively learned by performing 2D convolutions along the three planes of a volume.
The effectiveness of our approach is validated in Multi-Modality Abdominal Multi-Organ axis (AMOS) and Multi-Atlas Labeling Beyond the Cranial Vault (BTCV) datasets.
arXiv Detail & Related papers (2023-07-24T14:53:23Z) - Transferring Models Trained on Natural Images to 3D MRI via Position
Encoded Slice Models [14.42534860640976]
2D-Slice-CNN architecture embeds all the MRI slices with 2D encoders that take 2D image input and combines them via permutation-invariant layers.
With the insight that pretrained model can serve as the 2D encoder, we initialize the 2D encoder with ImageNet pretrained weights that outperform those and trained from scratch on two neuroimaging tasks.
arXiv Detail & Related papers (2023-03-02T18:52:31Z) - Learning 3D Representations from 2D Pre-trained Models via
Image-to-Point Masked Autoencoders [52.91248611338202]
We propose an alternative to obtain superior 3D representations from 2D pre-trained models via Image-to-Point Masked Autoencoders, named as I2P-MAE.
By self-supervised pre-training, we leverage the well learned 2D knowledge to guide 3D masked autoencoding.
I2P-MAE attains the state-of-the-art 90.11% accuracy, +3.68% to the second-best, demonstrating superior transferable capacity.
arXiv Detail & Related papers (2022-12-13T17:59:20Z) - Decomposing 3D Neuroimaging into 2+1D Processing for Schizophrenia
Recognition [25.80846093248797]
We propose to process the 3D data by a 2+1D framework so that we can exploit the powerful deep 2D Convolutional Neural Network (CNN) networks pre-trained on the huge ImageNet dataset for 3D neuroimaging recognition.
Specifically, 3D volumes of Magnetic Resonance Imaging (MRI) metrics are decomposed to 2D slices according to neighboring voxel positions.
Global pooling is applied to remove redundant information as the activation patterns are sparsely distributed over feature maps.
Channel-wise and slice-wise convolutions are proposed to aggregate the contextual information in the third dimension unprocessed by the 2D CNN model.
arXiv Detail & Related papers (2022-11-21T15:22:59Z) - GLEAM: Greedy Learning for Large-Scale Accelerated MRI Reconstruction [50.248694764703714]
Unrolled neural networks have recently achieved state-of-the-art accelerated MRI reconstruction.
These networks unroll iterative optimization algorithms by alternating between physics-based consistency and neural-network based regularization.
We propose Greedy LEarning for Accelerated MRI reconstruction, an efficient training strategy for high-dimensional imaging settings.
arXiv Detail & Related papers (2022-07-18T06:01:29Z) - Secrets of 3D Implicit Object Shape Reconstruction in the Wild [92.5554695397653]
Reconstructing high-fidelity 3D objects from sparse, partial observation is crucial for various applications in computer vision, robotics, and graphics.
Recent neural implicit modeling methods show promising results on synthetic or dense datasets.
But, they perform poorly on real-world data that is sparse and noisy.
This paper analyzes the root cause of such deficient performance of a popular neural implicit model.
arXiv Detail & Related papers (2021-01-18T03:24:48Z) - Automated Model Design and Benchmarking of 3D Deep Learning Models for
COVID-19 Detection with Chest CT Scans [72.04652116817238]
We propose a differentiable neural architecture search (DNAS) framework to automatically search for the 3D DL models for 3D chest CT scans classification.
We also exploit the Class Activation Mapping (CAM) technique on our models to provide the interpretability of the results.
arXiv Detail & Related papers (2021-01-14T03:45:01Z) - TSGCNet: Discriminative Geometric Feature Learning with Two-Stream
GraphConvolutional Network for 3D Dental Model Segmentation [141.2690520327948]
We propose a two-stream graph convolutional network (TSGCNet) to learn multi-view information from different geometric attributes.
We evaluate our proposed TSGCNet on a real-patient dataset of dental models acquired by 3D intraoral scanners.
arXiv Detail & Related papers (2020-12-26T08:02:56Z) - Modelling the Distribution of 3D Brain MRI using a 2D Slice VAE [66.63629641650572]
We propose a method to model 3D MR brain volumes distribution by combining a 2D slice VAE with a Gaussian model that captures the relationships between slices.
We also introduce a novel evaluation method for generated volumes that quantifies how well their segmentations match those of true brain anatomy.
arXiv Detail & Related papers (2020-07-09T13:23:15Z) - Attention-Guided Version of 2D UNet for Automatic Brain Tumor
Segmentation [2.371982686172067]
Gliomas are the most common and aggressive among brain tumors, which cause a short life expectancy in their highest grade.
Deep convolutional neural networks (DCNNs) have achieved a remarkable performance in brain tumor segmentation.
However, this task is still difficult owing to high varying intensity and appearance of gliomas.
arXiv Detail & Related papers (2020-04-04T20:09:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.