Attention-Guided Version of 2D UNet for Automatic Brain Tumor
Segmentation
- URL: http://arxiv.org/abs/2004.02009v1
- Date: Sat, 4 Apr 2020 20:09:06 GMT
- Title: Attention-Guided Version of 2D UNet for Automatic Brain Tumor
Segmentation
- Authors: Mehrdad Noori, Ali Bahri and Karim Mohammadi
- Abstract summary: Gliomas are the most common and aggressive among brain tumors, which cause a short life expectancy in their highest grade.
Deep convolutional neural networks (DCNNs) have achieved a remarkable performance in brain tumor segmentation.
However, this task is still difficult owing to high varying intensity and appearance of gliomas.
- Score: 2.371982686172067
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Gliomas are the most common and aggressive among brain tumors, which cause a
short life expectancy in their highest grade. Therefore, treatment assessment
is a key stage to enhance the quality of the patients' lives. Recently, deep
convolutional neural networks (DCNNs) have achieved a remarkable performance in
brain tumor segmentation, but this task is still difficult owing to high
varying intensity and appearance of gliomas. Most of the existing methods,
especially UNet-based networks, integrate low-level and high-level features in
a naive way, which may result in confusion for the model. Moreover, most
approaches employ 3D architectures to benefit from 3D contextual information of
input images. These architectures contain more parameters and computational
complexity than 2D architectures. On the other hand, using 2D models causes not
to benefit from 3D contextual information of input images. In order to address
the mentioned issues, we design a low-parameter network based on 2D UNet in
which we employ two techniques. The first technique is an attention mechanism,
which is adopted after concatenation of low-level and high-level features. This
technique prevents confusion for the model by weighting each of the channels
adaptively. The second technique is the Multi-View Fusion. By adopting this
technique, we can benefit from 3D contextual information of input images
despite using a 2D model. Experimental results demonstrate that our method
performs favorably against 2017 and 2018 state-of-the-art methods.
Related papers
- FAMOUS: High-Fidelity Monocular 3D Human Digitization Using View Synthesis [51.193297565630886]
The challenge of accurately inferring texture remains, particularly in obscured areas such as the back of a person in frontal-view images.
This limitation in texture prediction largely stems from the scarcity of large-scale and diverse 3D datasets.
We propose leveraging extensive 2D fashion datasets to enhance both texture and shape prediction in 3D human digitization.
arXiv Detail & Related papers (2024-10-13T01:25:05Z) - Brain3D: Generating 3D Objects from fMRI [76.41771117405973]
We design a novel 3D object representation learning method, Brain3D, that takes as input the fMRI data of a subject.
We show that our model captures the distinct functionalities of each region of human vision system.
Preliminary evaluations indicate that Brain3D can successfully identify the disordered brain regions in simulated scenarios.
arXiv Detail & Related papers (2024-05-24T06:06:11Z) - Masked LoGoNet: Fast and Accurate 3D Image Analysis for Medical Domain [48.440691680864745]
We introduce a new neural network architecture, termed LoGoNet, with a tailored self-supervised learning (SSL) method.
LoGoNet integrates a novel feature extractor within a U-shaped architecture, leveraging Large Kernel Attention (LKA) and a dual encoding strategy.
We propose a novel SSL method tailored for 3D images to compensate for the lack of large labeled datasets.
arXiv Detail & Related papers (2024-02-09T05:06:58Z) - E2ENet: Dynamic Sparse Feature Fusion for Accurate and Efficient 3D
Medical Image Segmentation [36.367368163120794]
We propose a 3D medical image segmentation model, named Efficient to Efficient Network (E2ENet)
It incorporates two parametrically and computationally efficient designs.
It consistently achieves a superior trade-off between accuracy and efficiency across various resource constraints.
arXiv Detail & Related papers (2023-12-07T22:13:37Z) - Interpretable 2D Vision Models for 3D Medical Images [47.75089895500738]
This study proposes a simple approach of adapting 2D networks with an intermediate feature representation for processing 3D images.
We show on all 3D MedMNIST datasets as benchmark and two real-world datasets consisting of several hundred high-resolution CT or MRI scans that our approach performs on par with existing methods.
arXiv Detail & Related papers (2023-07-13T08:27:09Z) - Decomposing 3D Neuroimaging into 2+1D Processing for Schizophrenia
Recognition [25.80846093248797]
We propose to process the 3D data by a 2+1D framework so that we can exploit the powerful deep 2D Convolutional Neural Network (CNN) networks pre-trained on the huge ImageNet dataset for 3D neuroimaging recognition.
Specifically, 3D volumes of Magnetic Resonance Imaging (MRI) metrics are decomposed to 2D slices according to neighboring voxel positions.
Global pooling is applied to remove redundant information as the activation patterns are sparsely distributed over feature maps.
Channel-wise and slice-wise convolutions are proposed to aggregate the contextual information in the third dimension unprocessed by the 2D CNN model.
arXiv Detail & Related papers (2022-11-21T15:22:59Z) - RiCS: A 2D Self-Occlusion Map for Harmonizing Volumetric Objects [68.85305626324694]
Ray-marching in Camera Space (RiCS) is a new method to represent the self-occlusions of foreground objects in 3D into a 2D self-occlusion map.
We show that our representation map not only allows us to enhance the image quality but also to model temporally coherent complex shadow effects.
arXiv Detail & Related papers (2022-05-14T05:35:35Z) - Super Images -- A New 2D Perspective on 3D Medical Imaging Analysis [0.0]
We present a simple yet effective 2D method to handle 3D data while efficiently embedding the 3D knowledge during training.
Our method generates a super-resolution image by stitching slices side by side in the 3D image.
While attaining equal, if not superior, results to 3D networks utilizing only 2D counterparts, the model complexity is reduced by around threefold.
arXiv Detail & Related papers (2022-05-05T09:59:03Z) - Improved Brain Age Estimation with Slice-based Set Networks [18.272915375351914]
We propose a new architecture for BrainAGE prediction.
The proposed architecture works by encoding each 2D slice in an MRI with a deep 2D-CNN model.
Next, it combines the information from these 2D-slice encodings using set networks or permutation invariant layers.
Experiments on the BrainAGE prediction problem, using the UK Biobank dataset, showed that the model with the permutation invariant layers trains faster and provides better predictions compared to other state-of-the-art approaches.
arXiv Detail & Related papers (2021-02-08T18:54:15Z) - Synthetic Training for Monocular Human Mesh Recovery [100.38109761268639]
This paper aims to estimate 3D mesh of multiple body parts with large-scale differences from a single RGB image.
The main challenge is lacking training data that have complete 3D annotations of all body parts in 2D images.
We propose a depth-to-scale (D2S) projection to incorporate the depth difference into the projection function to derive per-joint scale variants.
arXiv Detail & Related papers (2020-10-27T03:31:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.