論文の概要: Concentrated Document Topic Model
- arxiv url: http://arxiv.org/abs/2102.04449v1
- Date: Sat, 6 Feb 2021 07:12:05 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-10 15:12:00.672600
- Title: Concentrated Document Topic Model
- Title(参考訳): 集中型文書トピックモデル
- Authors: Hao Lei and Ying Chen
- Abstract要約: 教師なしテキスト分類のための集中文書トピックモデル(CDTM)を提案する。
多様なトピック分布を持つ紙はより罰せられるが、集中的なトピックを持つ紙は罰罰を減らされる。
NIPSデータセットにモデルを適用し、より一貫性のあるトピックと、より集中的で疎結合なドキュメントトピック分布を観察する。
- 参考スコア(独自算出の注目度): 3.9191509180670447
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We propose a Concentrated Document Topic Model(CDTM) for unsupervised text
classification, which is able to produce a concentrated and sparse document
topic distribution. In particular, an exponential entropy penalty is imposed on
the document topic distribution. Documents that have diverse topic
distributions are penalized more, while those having concentrated topics are
penalized less. We apply the model to the benchmark NIPS dataset and observe
more coherent topics and more concentrated and sparse document-topic
distributions than Latent Dirichlet Allocation(LDA).
- Abstract(参考訳): 本研究では,教師なしテキスト分類のための集中文書トピックモデル(cdtm)を提案する。
特に、文書のトピック分布に指数関数的エントロピーペナルティが課される。
多様なトピック分布を持つドキュメントはよりペナルティが課され、集中したトピックを持つ文書はペナルティが減る。
このモデルをベンチマークNIPSデータセットに適用し、Latent Dirichlet Allocation(LDA)よりもより一貫性のあるトピックと疎密なドキュメントトピック分布を観察する。
関連論文リスト
- The Power of Summary-Source Alignments [62.76959473193149]
多文書要約(MDS)は難しい課題であり、しばしばサリエンスと冗長性検出のサブタスクに分解される。
参照要約とそのソース文書間の対応する文のアライメントを利用して、トレーニングデータを生成する。
本稿では,よりきめ細かな提案スパンレベルで適用することで,要約ソースアライメントフレームワークを拡張することを提案する。
論文 参考訳(メタデータ) (2024-06-02T19:35:19Z) - Effective Neural Topic Modeling with Embedding Clustering Regularization [21.692088899479934]
新しいニューラルトピックモデルであるクラスタリング規則化トピックモデル(ECRTM)を提案する。
ECRTMは各トピックの埋め込みを、セマンティック空間内の個別に集約されたワード埋め込みクラスタの中心に強制する。
我々のECRTMは文書の質の高いトピック分布とともに多様で一貫性のあるトピックを生成する。
論文 参考訳(メタデータ) (2023-06-07T07:45:38Z) - Peek Across: Improving Multi-Document Modeling via Cross-Document
Question-Answering [49.85790367128085]
我々は,事前学習対象に答える新しいクロスドキュメント質問から,汎用的なマルチドキュメントモデルを事前学習する。
この新規なマルチドキュメントQA定式化は、クロステキスト情報関係をよりよく回復させるようモデルに指示する。
分類タスクや要約タスクに焦点を当てた従来のマルチドキュメントモデルとは異なり、事前学習対象の定式化により、短いテキスト生成と長いテキスト生成の両方を含むタスクを実行できる。
論文 参考訳(メタデータ) (2023-05-24T17:48:40Z) - Representing Mixtures of Word Embeddings with Mixtures of Topic
Embeddings [46.324584649014284]
トピックモデルはしばしば、文書の各単語が、一連のトピックと文書固有のトピック比に基づいてどのように生成されるかを説明する生成モデルとして定式化される。
本稿では、各文書を単語埋め込みベクトルの集合と見なし、各トピックを同じ埋め込み空間に埋め込みベクトルとしてモデル化する新しいトピックモデリングフレームワークを提案する。
同じベクトル空間に単語とトピックを埋め込み、文書の単語の埋め込みベクトルとそれらのトピックのセマンティックな差異を測る方法を定義し、すべての文書に対して期待される差を最小化するためにトピックの埋め込みを最適化する。
論文 参考訳(メタデータ) (2022-03-03T08:46:23Z) - A Proposition-Level Clustering Approach for Multi-Document Summarization [82.4616498914049]
クラスタリングアプローチを再検討し、より正確な情報アライメントの提案をグループ化します。
提案手法は,有意な命題を検出し,それらをパラフラスティックなクラスタに分類し,その命題を融合して各クラスタの代表文を生成する。
DUC 2004 とTAC 2011 データセットでは,従来の最先端 MDS 法よりも要約法が優れている。
論文 参考訳(メタデータ) (2021-12-16T10:34:22Z) - Topic-Guided Abstractive Multi-Document Summarization [21.856615677793243]
多文書要約(MDS)の重要なポイントは、様々な文書間の関係を学習することである。
異種グラフとして複数の文書を表現できる新しい抽象MDSモデルを提案する。
我々は、クロスドキュメントセマンティックユニットとして機能する潜在トピックを共同で発見するために、ニューラルトピックモデルを採用している。
論文 参考訳(メタデータ) (2021-10-21T15:32:30Z) - Author Clustering and Topic Estimation for Short Texts [69.54017251622211]
同じ文書中の単語間の強い依存をモデル化することにより、遅延ディリクレ割当を拡張できる新しいモデルを提案する。
同時にユーザをクラスタ化し、ホック後のクラスタ推定の必要性を排除しています。
我々の手法は、短文で生じる問題に対する従来のアプローチよりも、-または----------- で機能する。
論文 参考訳(メタデータ) (2021-06-15T20:55:55Z) - SummPip: Unsupervised Multi-Document Summarization with Sentence Graph
Compression [61.97200991151141]
SummPipはマルチドキュメント要約のための教師なしの手法である。
元の文書を文グラフに変換し、言語表現と深層表現の両方を考慮に入れます。
次に、スペクトルクラスタリングを適用して複数の文のクラスタを取得し、最後に各クラスタを圧縮して最終的な要約を生成する。
論文 参考訳(メタデータ) (2020-07-17T13:01:15Z) - Tired of Topic Models? Clusters of Pretrained Word Embeddings Make for
Fast and Good Topics too! [5.819224524813161]
事前学習した単語の埋め込みをクラスタリングし、重み付けされたクラスタリングと上位単語の再ランク付けのための文書情報を組み込んだ別の方法を提案する。
このアプローチの最も優れた組み合わせは、従来のトピックモデルと同様に機能するが、ランタイムと計算の複雑さは低い。
論文 参考訳(メタデータ) (2020-04-30T16:18:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。