論文の概要: Learning Unsupervised Cross-domain Image-to-Image Translation Using a
Shared Discriminator
- arxiv url: http://arxiv.org/abs/2102.04699v1
- Date: Tue, 9 Feb 2021 08:26:23 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-10 15:02:33.117522
- Title: Learning Unsupervised Cross-domain Image-to-Image Translation Using a
Shared Discriminator
- Title(参考訳): 共有識別器を用いた教師なし領域間画像変換の学習
- Authors: Rajiv Kumar, Rishabh Dabral, G. Sivakumar
- Abstract要約: 教師なし画像画像変換は、ソースドメインから画像を変換して、ソースターゲット画像ペアを使用することなく、ターゲットドメインで画像を生成するために使用される。
本稿では,2つのGAN間の1つの共有判別器を用いた新しい手法を提案する。
提案手法は,注意機構を付加せずにも,注意に基づく手法と同等に動作し,同等の画質の画像を生成できることが示唆された。
- 参考スコア(独自算出の注目度): 2.1377923666134118
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unsupervised image-to-image translation is used to transform images from a
source domain to generate images in a target domain without using source-target
image pairs. Promising results have been obtained for this problem in an
adversarial setting using two independent GANs and attention mechanisms. We
propose a new method that uses a single shared discriminator between the two
GANs, which improves the overall efficacy. We assess the qualitative and
quantitative results on image transfiguration, a cross-domain translation task,
in a setting where the target domain shares similar semantics to the source
domain. Our results indicate that even without adding attention mechanisms, our
method performs at par with attention-based methods and generates images of
comparable quality.
- Abstract(参考訳): 教師なし画像画像変換は、ソースドメインから画像を変換して、ソースターゲット画像ペアを使用することなく、ターゲットドメインで画像を生成するために使用される。
2つの独立したGANとアテンション機構を用いた対向的な設定において,この問題に対する確率的結果が得られた。
本稿では,2つのGAN間の1つの共有判別器を用いた新しい手法を提案する。
対象ドメインがソースドメインと類似したセマンティクスを共有する設定で、クロスドメイン翻訳タスクである画像変換に関する質的および定量的な結果を評価します。
その結果,注意機構を付加することなく,注意に基づく手法と同等に動作し,同等の品質の画像を生成することがわかった。
関連論文リスト
- Domain Agnostic Image-to-image Translation using Low-Resolution
Conditioning [6.470760375991825]
ドメインが関係するきめ細かい問題に対して,ドメインに依存しないi2i法を提案する。
本稿では、生成モデルを訓練し、関連するソース画像の固有情報を共有する画像を生成する新しいアプローチを提案する。
CelebA-HQ と AFHQ のデータセット上で,視覚的品質の向上を実証し,本手法の有効性を検証した。
論文 参考訳(メタデータ) (2023-05-08T19:58:49Z) - Multi-cropping Contrastive Learning and Domain Consistency for
Unsupervised Image-to-Image Translation [5.562419999563734]
マルチクロップ型コントラスト学習とドメイン整合性に基づく新しい教師なし画像から画像への翻訳フレームワーク MCDUT を提案する。
多くの画像と画像の翻訳タスクにおいて,本手法は最先端の結果を達成し,その利点は比較実験とアブレーション研究によって証明されている。
論文 参考訳(メタデータ) (2023-04-24T16:20:28Z) - Unsupervised Domain Adaptation for Semantic Segmentation using One-shot
Image-to-Image Translation via Latent Representation Mixing [9.118706387430883]
超高解像度画像のセマンティックセグメンテーションのための新しい教師なし領域適応法を提案する。
潜在コンテンツ表現をドメイン間で混合するエンコーダ・デコーダの原理に基づいて,画像から画像への変換パラダイムを提案する。
都市間比較実験により,提案手法は最先端領域適応法より優れていることが示された。
論文 参考訳(メタデータ) (2022-12-07T18:16:17Z) - Multi-domain Unsupervised Image-to-Image Translation with Appearance
Adaptive Convolution [62.4972011636884]
本稿では,MDUIT(Multi-domain unsupervised image-to-image translation)フレームワークを提案する。
我々は、分解されたコンテンツ特徴と外観適応的畳み込みを利用して、画像をターゲットの外観に変換する。
提案手法は,最先端の手法と比較して,複数の領域で視覚的に多様かつ妥当な結果が得られることを示す。
論文 参考訳(メタデータ) (2022-02-06T14:12:34Z) - Image-to-image Translation as a Unique Source of Knowledge [91.3755431537592]
本稿では,光学領域からSAR領域へのラベル付きデータセットの変換を行う。
積み重ねは、異なるI2I翻訳から学んだ知識を組み合わせる方法として提案され、単一のモデルに対して評価される。
論文 参考訳(メタデータ) (2021-12-03T12:12:04Z) - RPCL: A Framework for Improving Cross-Domain Detection with Auxiliary
Tasks [74.10747285807315]
Cross-Domain Detection (XDD) は、ソースドメインからラベル付きイメージを使用してオブジェクト検出器をトレーニングすることを目的としている。
本稿では,両領域で同じ補助的タスクを同時に学習することで,ドメインを協調させる補完的ソリューションを提供する。
論文 参考訳(メタデータ) (2021-04-18T02:56:19Z) - Deep Symmetric Adaptation Network for Cross-modality Medical Image
Segmentation [40.95845629932874]
監視されていないドメイン適応(UDA)手法は、クロスモダリティ医療イメージセグメンテーションタスクで有望なパフォーマンスを示しています。
医療用画像セグメンテーションのためのUDAの新しいディープシンメトリーアーキテクチャを提案する。セグメンテーションサブネットワークと2つのシンメトリーソースとターゲットドメイン翻訳サブネットワークからなる。
本手法は,Cardiac と BraTS のセグメンテーションタスクにおける最先端手法と比較して,顕著な利点がある。
論文 参考訳(メタデータ) (2021-01-18T02:54:30Z) - Continuous and Diverse Image-to-Image Translation via Signed Attribute
Vectors [120.13149176992896]
本稿では,様々な領域にまたがる多様な写像経路の連続的な変換を可能にする,効果的に署名された属性ベクトルを提案する。
連続翻訳結果の視覚的品質を高めるため、2つの符号対称属性ベクトル間の軌跡を生成する。
論文 参考訳(メタデータ) (2020-11-02T18:59:03Z) - Label-Driven Reconstruction for Domain Adaptation in Semantic
Segmentation [43.09068177612067]
教師なしのドメイン適応は、セマンティックセグメンテーションにおけるピクセルワイズアノテーションの必要性を軽減することができる。
最も一般的な戦略の1つは、ソースドメインからターゲットドメインに画像を変換し、敵対学習を用いて特徴空間内の限界分布を調整することである。
本稿では、画像翻訳バイアスを緩和し、ドメイン間機能を同じカテゴリに整合させる革新的なフレームワークを提案する。
論文 参考訳(メタデータ) (2020-03-10T10:06:35Z) - Unsupervised Bidirectional Cross-Modality Adaptation via Deeply
Synergistic Image and Feature Alignment for Medical Image Segmentation [73.84166499988443]
我々は、Synergistic Image and Feature Alignment (SIFA)と名付けられた新しい教師なしドメイン適応フレームワークを提案する。
提案するSIFAは、画像と特徴の両方の観点から、ドメインの相乗的アライメントを行う。
2つの異なるタスクに対する実験結果から,SIFA法は未ラベル対象画像のセグメンテーション性能を向上させるのに有効であることが示された。
論文 参考訳(メタデータ) (2020-02-06T13:49:47Z) - CrDoCo: Pixel-level Domain Transfer with Cross-Domain Consistency [119.45667331836583]
教師なしのドメイン適応アルゴリズムは、あるドメインから学んだ知識を別のドメインに転送することを目的としている。
本稿では,新しい画素単位の対向領域適応アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-01-09T19:00:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。