Federated Learning with Local Differential Privacy: Trade-offs between
Privacy, Utility, and Communication
- URL: http://arxiv.org/abs/2102.04737v1
- Date: Tue, 9 Feb 2021 10:04:18 GMT
- Title: Federated Learning with Local Differential Privacy: Trade-offs between
Privacy, Utility, and Communication
- Authors: Muah Kim, Onur G\"unl\"u, and Rafael F. Schaefer
- Abstract summary: Federated learning (FL) allows to train a massive amount of data privately due to its decentralized structure.
We consider Gaussian mechanisms to preserve local differential privacy (LDP) of user data in the FL model with SGD.
Our results guarantee a significantly larger utility and a smaller transmission rate as compared to existing privacy accounting methods.
- Score: 22.171647103023773
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated learning (FL) allows to train a massive amount of data privately
due to its decentralized structure. Stochastic gradient descent (SGD) is
commonly used for FL due to its good empirical performance, but sensitive user
information can still be inferred from weight updates shared during FL
iterations. We consider Gaussian mechanisms to preserve local differential
privacy (LDP) of user data in the FL model with SGD. The trade-offs between
user privacy, global utility, and transmission rate are proved by defining
appropriate metrics for FL with LDP. Compared to existing results, the query
sensitivity used in LDP is defined as a variable and a tighter privacy
accounting method is applied. The proposed utility bound allows heterogeneous
parameters over all users. Our bounds characterize how much utility decreases
and transmission rate increases if a stronger privacy regime is targeted.
Furthermore, given a target privacy level, our results guarantee a
significantly larger utility and a smaller transmission rate as compared to
existing privacy accounting methods.
Related papers
- Binary Federated Learning with Client-Level Differential Privacy [7.854806519515342]
Federated learning (FL) is a privacy-preserving collaborative learning framework.
Existing FL systems typically adopt Federated Average (FedAvg) as the training algorithm.
We propose a communication-efficient FL training algorithm with differential privacy guarantee.
arXiv Detail & Related papers (2023-08-07T06:07:04Z) - Differentially Private Wireless Federated Learning Using Orthogonal
Sequences [56.52483669820023]
We propose a privacy-preserving uplink over-the-air computation (AirComp) method, termed FLORAS.
We prove that FLORAS offers both item-level and client-level differential privacy guarantees.
A new FL convergence bound is derived which, combined with the privacy guarantees, allows for a smooth tradeoff between the achieved convergence rate and differential privacy levels.
arXiv Detail & Related papers (2023-06-14T06:35:10Z) - PS-FedGAN: An Efficient Federated Learning Framework Based on Partially
Shared Generative Adversarial Networks For Data Privacy [56.347786940414935]
Federated Learning (FL) has emerged as an effective learning paradigm for distributed computation.
This work proposes a novel FL framework that requires only partial GAN model sharing.
Named as PS-FedGAN, this new framework enhances the GAN releasing and training mechanism to address heterogeneous data distributions.
arXiv Detail & Related papers (2023-05-19T05:39:40Z) - FedLAP-DP: Federated Learning by Sharing Differentially Private Loss Approximations [53.268801169075836]
We propose FedLAP-DP, a novel privacy-preserving approach for federated learning.
A formal privacy analysis demonstrates that FedLAP-DP incurs the same privacy costs as typical gradient-sharing schemes.
Our approach presents a faster convergence speed compared to typical gradient-sharing methods.
arXiv Detail & Related papers (2023-02-02T12:56:46Z) - Sparse Federated Learning with Hierarchical Personalized Models [24.763028713043468]
Federated learning (FL) can achieve privacy-safe and reliable collaborative training without collecting users' private data.
We propose a personalized FL algorithm using a hierarchical proximal mapping based on the moreau envelop, named sparse federated learning with hierarchical personalized models (sFedHP)
A continuously differentiable approximated L1-norm is also used as the sparse constraint to reduce the communication cost.
arXiv Detail & Related papers (2022-03-25T09:06:42Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
Federated learning (FL) is a promising strategy for performing privacy-preserving, distributed learning with a network of clients (i.e., edge devices)
arXiv Detail & Related papers (2021-11-28T19:03:39Z) - Privacy Assessment of Federated Learning using Private Personalized
Layers [0.9023847175654603]
Federated Learning (FL) is a collaborative scheme to train a learning model across multiple participants without sharing data.
We quantify the utility and privacy trade-off of a FL scheme using private personalized layers.
arXiv Detail & Related papers (2021-06-15T11:40:16Z) - Voting-based Approaches For Differentially Private Federated Learning [87.2255217230752]
This work is inspired by knowledge transfer non-federated privacy learning from Papernot et al.
We design two new DPFL schemes, by voting among the data labels returned from each local model, instead of averaging the gradients.
Our approaches significantly improve the privacy-utility trade-off over the state-of-the-arts in DPFL.
arXiv Detail & Related papers (2020-10-09T23:55:19Z) - Federated Learning with Sparsification-Amplified Privacy and Adaptive
Optimization [27.243322019117144]
Federated learning (FL) enables distributed agents to collaboratively learn a centralized model without sharing their raw data with each other.
We propose a new FL framework with sparsification-amplified privacy.
Our approach integrates random sparsification with gradient perturbation on each agent to amplify privacy guarantee.
arXiv Detail & Related papers (2020-08-01T20:22:57Z) - Differentially Private Federated Learning with Laplacian Smoothing [72.85272874099644]
Federated learning aims to protect data privacy by collaboratively learning a model without sharing private data among users.
An adversary may still be able to infer the private training data by attacking the released model.
Differential privacy provides a statistical protection against such attacks at the price of significantly degrading the accuracy or utility of the trained models.
arXiv Detail & Related papers (2020-05-01T04:28:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.