PS-FedGAN: An Efficient Federated Learning Framework Based on Partially
Shared Generative Adversarial Networks For Data Privacy
- URL: http://arxiv.org/abs/2305.11437v1
- Date: Fri, 19 May 2023 05:39:40 GMT
- Title: PS-FedGAN: An Efficient Federated Learning Framework Based on Partially
Shared Generative Adversarial Networks For Data Privacy
- Authors: Achintha Wijesinghe, Songyang Zhang, Zhi Ding
- Abstract summary: Federated Learning (FL) has emerged as an effective learning paradigm for distributed computation.
This work proposes a novel FL framework that requires only partial GAN model sharing.
Named as PS-FedGAN, this new framework enhances the GAN releasing and training mechanism to address heterogeneous data distributions.
- Score: 56.347786940414935
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated Learning (FL) has emerged as an effective learning paradigm for
distributed computation owing to its strong potential in capturing underlying
data statistics while preserving data privacy. However, in cases of practical
data heterogeneity among FL clients, existing FL frameworks still exhibit
deficiency in capturing the overall feature properties of local client data
that exhibit disparate distributions. In response, generative adversarial
networks (GANs) have recently been exploited in FL to address data
heterogeneity since GANs can be integrated for data regeneration without
exposing original raw data. Despite some successes, existing GAN-related FL
frameworks often incur heavy communication cost and also elicit other privacy
concerns, which limit their applications in real scenarios. To this end, this
work proposes a novel FL framework that requires only partial GAN model
sharing. Named as PS-FedGAN, this new framework enhances the GAN releasing and
training mechanism to address heterogeneous data distributions across clients
and to strengthen privacy preservation at reduced communication cost,
especially over wireless networks. Our analysis demonstrates the convergence
and privacy benefits of the proposed PS-FEdGAN framework. Through experimental
results based on several well-known benchmark datasets, our proposed PS-FedGAN
shows great promise to tackle FL under non-IID client data distributions, while
securing data privacy and lowering communication overhead.
Related papers
- Disentangling data distribution for Federated Learning [20.524108508314107]
Federated Learning (FL) facilitates collaborative training of a global model whose performance is boosted by private data owned by distributed clients.
Yet the wide applicability of FL is hindered by entanglement of data distributions across different clients.
This paper demonstrates for the first time that by disentangling data distributions FL can in principle achieve efficiencies comparable to those of distributed systems.
arXiv Detail & Related papers (2024-10-16T13:10:04Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
Federated Learning (FL) relies on the effectiveness of utilizing knowledge from distributed datasets.
Traditional FL methods adopt an aggregate-then-adapt framework, where clients update local models based on a global model aggregated by the server from the previous training round.
We introduce FedAF, a novel aggregation-free FL algorithm.
arXiv Detail & Related papers (2024-04-29T05:55:23Z) - Federated Learning Empowered by Generative Content [55.576885852501775]
Federated learning (FL) enables leveraging distributed private data for model training in a privacy-preserving way.
We propose a novel FL framework termed FedGC, designed to mitigate data heterogeneity issues by diversifying private data with generative content.
We conduct a systematic empirical study on FedGC, covering diverse baselines, datasets, scenarios, and modalities.
arXiv Detail & Related papers (2023-12-10T07:38:56Z) - PFL-GAN: When Client Heterogeneity Meets Generative Models in
Personalized Federated Learning [55.930403371398114]
We propose a novel generative adversarial network (GAN) sharing and aggregation strategy for personalized learning (PFL)
PFL-GAN addresses the client heterogeneity in different scenarios. More specially, we first learn the similarity among clients and then develop an weighted collaborative data aggregation.
The empirical results through the rigorous experimentation on several well-known datasets demonstrate the effectiveness of PFL-GAN.
arXiv Detail & Related papers (2023-08-23T22:38:35Z) - UFed-GAN: A Secure Federated Learning Framework with Constrained
Computation and Unlabeled Data [50.13595312140533]
We propose a novel framework of UFed-GAN: Unsupervised Federated Generative Adversarial Network, which can capture user-side data distribution without local classification training.
Our experimental results demonstrate the strong potential of UFed-GAN in addressing limited computational resources and unlabeled data while preserving privacy.
arXiv Detail & Related papers (2023-08-10T22:52:13Z) - Personalized Privacy-Preserving Framework for Cross-Silo Federated
Learning [0.0]
Federated learning (FL) is a promising decentralized deep learning (DL) framework that enables DL-based approaches trained collaboratively across clients without sharing private data.
In this paper, we propose a novel framework, namely Personalized Privacy-Preserving Federated Learning (PPPFL)
Our proposed framework outperforms multiple FL baselines on different datasets, including MNIST, Fashion-MNIST, CIFAR-10, and CIFAR-100.
arXiv Detail & Related papers (2023-02-22T07:24:08Z) - Clustered Data Sharing for Non-IID Federated Learning over Wireless
Networks [39.80420645943706]
Federated Learning (FL) is a distributed machine learning approach to leverage data from the Internet of Things (IoT)
Current FL algorithms face the challenges of non-independent and identically distributed (non-IID) data, which causes high communication costs and model accuracy declines.
We propose a clustered data sharing framework which spares the partial data from cluster heads to credible associates through device-to-device (D2D) communication.
arXiv Detail & Related papers (2023-02-17T07:11:02Z) - FedLAP-DP: Federated Learning by Sharing Differentially Private Loss Approximations [53.268801169075836]
We propose FedLAP-DP, a novel privacy-preserving approach for federated learning.
A formal privacy analysis demonstrates that FedLAP-DP incurs the same privacy costs as typical gradient-sharing schemes.
Our approach presents a faster convergence speed compared to typical gradient-sharing methods.
arXiv Detail & Related papers (2023-02-02T12:56:46Z) - Federated Learning in Non-IID Settings Aided by Differentially Private
Synthetic Data [20.757477553095637]
Federated learning (FL) is a privacy-promoting framework that enables clients to collaboratively train machine learning models.
A major challenge in federated learning arises when the local data is heterogeneous.
We propose FedDPMS, an FL algorithm in which clients deploy variational auto-encoders to augment local datasets with data synthesized using differentially private means of latent data representations.
arXiv Detail & Related papers (2022-06-01T18:00:48Z) - Stochastic Coded Federated Learning with Convergence and Privacy
Guarantees [8.2189389638822]
Federated learning (FL) has attracted much attention as a privacy-preserving distributed machine learning framework.
This paper proposes a coded federated learning framework, namely coded federated learning (SCFL) to mitigate the straggler issue.
We characterize the privacy guarantee by the mutual information differential privacy (MI-DP) and analyze the convergence performance in federated learning.
arXiv Detail & Related papers (2022-01-25T04:43:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.