COLOGNE: Coordinated Local Graph Neighborhood Sampling
- URL: http://arxiv.org/abs/2102.04770v1
- Date: Tue, 9 Feb 2021 11:39:06 GMT
- Title: COLOGNE: Coordinated Local Graph Neighborhood Sampling
- Authors: Konstantin Kutzkov
- Abstract summary: replacing discrete unordered objects such as graph nodes by real-valued vectors is at the heart of many approaches to learning from graph data.
We address the problem of learning discrete node embeddings such that the coordinates of the node vector representations are graph nodes.
This opens the door to designing interpretable machine learning algorithms for graphs as all attributes originally present in the nodes are preserved.
- Score: 1.6498361958317633
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Representation learning for graphs enables the application of standard
machine learning algorithms and data analysis tools to graph data. Replacing
discrete unordered objects such as graph nodes by real-valued vectors is at the
heart of many approaches to learning from graph data. Such vector
representations, or embeddings, capture the discrete relationships in the
original data by representing nodes as vectors in a high-dimensional space.
In most applications graphs model the relationship between real-life objects
and often nodes contain valuable meta-information about the original objects.
While being a powerful machine learning tool, embeddings are not able to
preserve such node attributes. We address this shortcoming and consider the
problem of learning discrete node embeddings such that the coordinates of the
node vector representations are graph nodes. This opens the door to designing
interpretable machine learning algorithms for graphs as all attributes
originally present in the nodes are preserved.
We present a framework for coordinated local graph neighborhood sampling
(COLOGNE) such that each node is represented by a fixed number of graph nodes,
together with their attributes. Individual samples are coordinated and they
preserve the similarity between node neighborhoods. We consider different
notions of similarity for which we design scalable algorithms. We show
theoretical results for all proposed algorithms. Experiments on benchmark
graphs evaluate the quality of the designed embeddings and demonstrate how the
proposed embeddings can be used in training interpretable machine learning
algorithms for graph data.
Related papers
- Deep Manifold Graph Auto-Encoder for Attributed Graph Embedding [51.75091298017941]
This paper proposes a novel Deep Manifold (Variational) Graph Auto-Encoder (DMVGAE/DMGAE) for attributed graph data.
The proposed method surpasses state-of-the-art baseline algorithms by a significant margin on different downstream tasks across popular datasets.
arXiv Detail & Related papers (2024-01-12T17:57:07Z) - Saliency-Aware Regularized Graph Neural Network [39.82009838086267]
We propose the Saliency-Aware Regularized Graph Neural Network (SAR-GNN) for graph classification.
We first estimate the global node saliency by measuring the semantic similarity between the compact graph representation and node features.
Then the learned saliency distribution is leveraged to regularize the neighborhood aggregation of the backbone.
arXiv Detail & Related papers (2024-01-01T13:44:16Z) - GraphRARE: Reinforcement Learning Enhanced Graph Neural Network with Relative Entropy [21.553180564868306]
GraphRARE is a framework built upon node relative entropy and deep reinforcement learning.
An innovative node relative entropy is used to measure mutual information between node pairs.
A deep reinforcement learning-based algorithm is developed to optimize the graph topology.
arXiv Detail & Related papers (2023-12-15T11:30:18Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
We introduce a novel all-pair message passing scheme for efficiently propagating node signals between arbitrary nodes.
The efficient computation is enabled by a kernerlized Gumbel-Softmax operator.
Experiments demonstrate the promising efficacy of the method in various tasks including node classification on graphs.
arXiv Detail & Related papers (2023-06-14T09:21:15Z) - CGMN: A Contrastive Graph Matching Network for Self-Supervised Graph
Similarity Learning [65.1042892570989]
We propose a contrastive graph matching network (CGMN) for self-supervised graph similarity learning.
We employ two strategies, namely cross-view interaction and cross-graph interaction, for effective node representation learning.
We transform node representations into graph-level representations via pooling operations for graph similarity computation.
arXiv Detail & Related papers (2022-05-30T13:20:26Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
We propose a robust framework for adversarial graph embedding, named AGE.
AGE generates the fake neighbor nodes as the enhanced negative samples from the implicit distribution.
Based on this framework, we propose three models to handle three types of graph data.
arXiv Detail & Related papers (2021-05-22T07:05:48Z) - Permutation-Invariant Variational Autoencoder for Graph-Level
Representation Learning [0.0]
We propose a permutation-invariant variational autoencoder for graph structured data.
Our model indirectly learns to match the node ordering of input and output graph, without imposing a particular node ordering.
We demonstrate the effectiveness of our proposed model on various graph reconstruction and generation tasks.
arXiv Detail & Related papers (2021-04-20T09:44:41Z) - Online Graph Dictionary Learning [10.394615068526505]
We propose a new online Graph Dictionary Learning approach, which uses the Gromov Wasserstein divergence for the data fitting term.
In our work, graphs are encoded through their nodes' pairwise relations and modeled as convex combination of graph atoms.
Our approach naturally extends to labeled graphs, and is completed by a novel upper bound that can be used as a fast approximation of Gromov Wasserstein in the embedding space.
arXiv Detail & Related papers (2021-02-12T14:39:28Z) - Inverse Graph Identification: Can We Identify Node Labels Given Graph
Labels? [89.13567439679709]
Graph Identification (GI) has long been researched in graph learning and is essential in certain applications.
This paper defines a novel problem dubbed Inverse Graph Identification (IGI)
We propose a simple yet effective method that makes the node-level message passing process using Graph Attention Network (GAT) under the protocol of GI.
arXiv Detail & Related papers (2020-07-12T12:06:17Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
We propose a novel graph pooling strategy that leverages node proximity to improve the hierarchical representation learning of graph data with their multi-hop topology.
Results show that the proposed graph pooling strategy is able to achieve state-of-the-art performance on a collection of public graph classification benchmark datasets.
arXiv Detail & Related papers (2020-06-19T13:09:44Z) - Wasserstein Embedding for Graph Learning [33.90471037116372]
Wasserstein Embedding for Graph Learning (WEGL) is a framework for embedding entire graphs in a vector space.
We leverage new insights on defining similarity between graphs as a function of the similarity between their node embedding distributions.
We evaluate our new graph embedding approach on various benchmark graph-property prediction tasks.
arXiv Detail & Related papers (2020-06-16T18:23:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.